Expression of enzymes in yeast for lignocellulose derived oligomer CBP专利检索- .....β-半乳糖苷酶专利检索查询-专利查询网 (2024)

说明书全文

STATEMENT REGARDING FEDERALLY-SPONSORED RESEARCH AND DEVELOPMENT

This invention was funded, in part, by the United States government under a grant with the Department of Energy, Award No. DE-FC36-08G018103. This invention was also funded, in part, by the Bioenergy Science Center, Oak Ridge National Laboratory, a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research, under contract DE-PS02-06ER64304. The U.S. Government has certain rights in this invention.

REFERENCE TO SEQUENCE LISTING

The content of the sequence listing filed with the application is incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

Energy conversion, utilization, and access underlie many of the great challenges of our time, including those associated with sustainability, environmental quality, security, and poverty. New applications of emerging technologies are required to respond to these challenges. Biotechnology, one of the most powerful of the emerging technologies, can give rise to important new energy conversion processes. Plant biomass and derivatives thereof are a resource for the biological conversion of energy to forms useful to humanity.

Biomass is from living, or recently living organisms, such as wood, waste, (hydrogen) gas, and alcohol fuels. Biomass is carbon, hydrogen, and oxygen based. Nitrogen and small quantities of other atoms, including alkali, alkaline earth and heavy metals can be found as well. Metals are often found in functional molecules such as the porphyrins which include chlorophyll which contains magnesium. Plants in particular combine water and carbon dioxide to sugar building blocks. The required energy is produced from light via photosynthesis based on chlorophyll. On average, between 0.1% and 1% of the available light is stored as chemical energy in plants. The sugar building blocks are the starting point for all of the major fractions found in terrestrial plants, lignin, hemicellulose, and cellulose. Biomass is widely recognized as a promising source of raw material for production of renewable fuels and chemicals. The primary obstacle impeding the more widespread production of energy from biomass feedstocks is the general absence of low-cost technology for overcoming the recalcitrance of these materials to conversion into useful fuels. Biomass contains carbohydrate fractions (e.g., starch, cellulose, and hemicellulose) that can be converted into ethanol. In order to convert these fractions, the starch, cellulose, and hemicellulose must ultimately be converted or hydrolyzed into monosaccharides; it is the hydrolysis that has historically proven to be problematic.

Biologically mediated processes are promising for energy conversion, in particular, for the conversion of biomass into fuels. Biomass processing schemes involving enzymatic or microbial hydrolysis commonly involve four biologically mediated transformations: (1) the production of saccharolytic enzymes (amylases, cellulases, and hemicellulases); (2) the hydrolysis of carbohydrate components present in pretreated biomass to sugars; (3) the fermentation of hexose sugars (e.g., glucose, mannose, and galactose); and (4) the fermentation of pentose sugars (e.g., xylose and arabinose). These four transformations occur in a single step in a process configuration called consolidated bioprocessing (CBP), which is distinguished from other less highly integrated configurations in that it does not involve a dedicated process step for cellulase and/or hemicellulase production.

CBP offers the potential for lower cost and higher efficiency than processes featuring dedicated saccharolytic enzyme production. The benefits result in part from avoided capital costs, substrate, and other raw materials, and utilities associated with saccharolytic enzyme production. In addition, several factors support the realization of higher rates of hydrolysis, and hence reduced reactor volume and capital investment using CBP, including enzyme-microbe synergy and the use of thermophilic organisms and/or complexed saccharolytic systems. Moreover, cellulose-adherent cellulolytic microorganisms are likely to compete successfully for products of cellulose hydrolysis with non-adhered microbes, e.g., contaminants, which could increase the stability of industrial processes based on microbial cellulose utilization. Progress in developing CBP-enabling microorganisms is being made through two strategies: engineering naturally occurring saccharolytic microorganisms to improve product-related properties, such as yield and titer; and engineering non-saccharolytic organisms that exhibit high product yields and titers to express a heterologous saccharolytic enzyme system enabling starch, cellulose, and hemicellulose utilization.

The breakdown of starch down into sugar requires amylolytic enzymes. Amylase is an example of an amylolytic enzyme that is present in human saliva, where it begins the chemical process of digestion. The pancreas also makes amylase (alpha amylase) to hydrolyze dietary starch into disaccharides and trisaccharides which are converted by other enzymes to glucose to supply the body with energy. Plants and some bacteria also produce amylases. Amylases are glycoside hydrolases and act on α-1,4-glycosidic bonds.

Several amylolytic enzymes are implicated in starch hydrolysis. Alpha-amylases (EC 3.2.1.1) (alternate names: 1,4-α-D-glucan glucanohydrolase; glycogenase) are calcium metalloenzymes, i.e., completely unable to function in the absence of calcium. By acting at random locations along the starch chain, alpha-amylase breaks down long-chain carbohydrates, ultimately yielding maltotriose and maltose from amylose, or maltose, glucose and “limit dextrin” from amylopectin. Because it can act anywhere on the substrate, alpha-amylase tends to be faster-acting than beta-amylase. Another form of amylase, beta-amylase (EC 3.2.1.2) (alternate names: 1,4-α-D-glucan maltohydrolase; glycogenase; saccharogen amylase) catalyzes the hydrolysis of the second α-1,4 glycosidic bond, cleaving off two glucose units (maltose) at a time. The third amylase is gamma-amylase (EC 3.2.1.3) (alternate names: Glucan 1,4-α-glucosidase; amyloglucosidase; Exo-1,4-α-glucosidase; glucoamylase; lysosomal α-glucosidase; 1,4-α-D-glucan glucohydrolase). In addition to cleaving the last α(1-4)glycosidic linkages at the nonreducing end of amylose and amylopectin, yielding glucose, gamma-amylase will cleave α(1-6) glycosidic linkages.

A fourth enzyme, alpha-glucosidase, acts on maltose and other short malto-oligosaccharides produced by alpha-, beta-, and gamma-amylases, converting them to glucose.

Three major types of enzymatic activities are required for native cellulose degradation. The first type are endoglucanases (1,4-β-D-glucan 4-glucanohydrolases; EC 3.2.1.4). Endoglucanases cut at random in the cellulose polysaccharide chain of amorphous cellulose, generating oligosaccharides of varying lengths and consequently new chain ends. The second type are exoglucanases, including cellodextrinases (1,4-β-D-glucan glucanohydrolases; EC 3.2.1.74) and cellobiohydrolases (1,4-β-D-glucan cellobiohydrolases; EC 3.2.1.91). Exoglucanases act in a processive manner on the reducing or non-reducing ends of cellulose polysaccharide chains, liberating either glucose (glucanohydrolases) or cellobiose (cellobiohydrolase) as major products. Exoglucanases also act on microcrystalline cellulose, presumably peeling cellulose chains from the microcrystalline structure. The third type are β-glucosidases (β glucoside glucohydrolases; EC 3.2.1.21). β-glucosidases hydrolyze soluble cellodextrins and cellobiose to glucose units.

A variety of plant biomass resources are available as starch and lignocellulosics for the production of biofuels, notably bioethanol. The major sources of plant biomass resources are (i) wood residues from paper mills, sawmills, and furniture manufacturing, (ii) municipal solid wastes, (iii) agricultural residues, and (iv) energy crops such as corn. Pre-conversion of particularly the cellulosic fraction in these biomass resources (using physical, chemical, or enzymatic processes) to fermentable sugars (glucose, cellobiose, maltose, alpha- and cellodextrins) would enable their fermentation to bioethanol, provided the necessary fermentative micro-organism with the ability to utilize these sugars is used.

On a world-wide basis, 1.3×1010 metric tons (dry weight) of terrestrial plants are produced annually (Demain, A. L., et al., Microbiol. Mol. Biol. Rev. 69:124-154 (2005)). Plant biomass consists of about 40%-55% cellulose, 25%-50% hemicellulose and 10%-40% lignin, depending whether the source is hardwood, softwood, or grasses (Sun, Y. and Cheng, J., Bioresource Technol. 83:1-11 (2002)). The major polysaccharide present is water-insoluble, cellulose that contains the major fraction of fermentable sugars (glucose, cellobiose or cellodextrins).

Hemicellulose oligomers represent a significant portion of lignocellulosic feedstocks. In hardwood species, carbohydrate structures with monomeric components including xylose, mannose, galactose, and arabinose make up as much as 20% of the feedstock by weight. Several methods of biomass pretreatment produce a mixture of soluble oligomers and monomers, including xylo-oligomers and gluco-oligomers in addition to those cited above. In addition, an insoluble fraction containing glucan, additional hemicellulose oligomers, and lignin is produced. Aqueous pretreatments in particular leave hemicellulose oligomers intact, and the conversion of this mixture of soluble oligomers is achieved using acid hydrolysis (Kim, Y., Kreke, T., Ladisch, M. R. Reaction mechanisms and kinetics of xylo-oligosaccharide hydrolysis by dicarboxylic acids. AICHe Journal. (2012). Article first published online: 23 Apr. 2012) or enzymatic hydrolysis prior to fermentation, with varying degrees of efficiency and cost. Acid hydrolysis in particular requires increased costs due to reaction vessels that require the ability to withstand low pH, high temperature, and pressure, although high yields have been reported (Kim, Y., Kreke, T., Ladisch, M. R. Reaction mechanisms and kinetics of xylo-oligosaccharide hydrolysis by dicarboxylic acids. AICHe Journal. (2012). Article first published online: 23 Apr. 2012). In addition, it is known that the hydrolysis of xylo-oligomers is very important for improving the kinetics of cellulose hydrolysis by cellulase as these enzymes are very inhibited by these oligomers (Qing, Q., Yang, B., Wyman, C. E. Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresource Technol. 101:9624-9630 (2010); see also U.S. application Ser. No. 13/055,366, published as U.S. Pub. No. 2011/0201084). As shown below, several commercially available enzyme preparations are relatively poor at achieving high yield enzymatic hydrolysis of substituted, soluble oligomers derived from hardwood.

Bakers' yeast (Saccharomyces cerevisiae) remains the preferred micro-organism for the production of ethanol (Hahn-Hagerdal, B., et al., Adv. Biochem. Eng. Biotechnol. 73:53-84 (2001)). Attributes in favor of this microbe are (i) high productivity at close to theoretical yields (0.51 g ethanol produced/g glucose used), (ii) high osmo- and ethanol tolerance, (iii) natural robustness in industrial processes, (iv) being generally regarded as safe (GRAS) due to its long association with wine and bread making, and beer brewing. Furthermore, S. cerevisiae exhibits tolerance to inhibitors commonly found in hydrolyzates resulting from biomass pretreatment. The major shortcoming of S. cerevisiae is its inability to utilize complex polysaccharides such as starch, cellulose, and polymeric hemicellulose or its break-down products, such as cellobiose, xylose, and cellodextrins.

As noted above, ethanol producing yeast such as S. cerevisiae require addition of external cellulases when cultivated on cellulosic substrates such as pre-treated wood because this yeast does not produce endogenous cellulases. Functional expression of fungal cellulases such as T. reesei CBH1 and CBH2 in yeast S. cerevisiae have been demonstrated (Den Haan R et al., Metab. Eng., 9:87-94 (2007)). However, current levels of expression and specific activity of cellulases heterologously expressed in yeast are still not maximally efficient with respect to the lignocellulosic substrate. Thus, there remains a significant need for improvement in the amount and variety of cellulase activity expressed in order to attain the goal of achieving a consolidated bioprocessing (CBP) system capable of efficiently and cost-effectively converting cellulosic substrates to ethanol.

The composition of lignocellulosic material varies greatly based on its species of origin, the particular tissue from which it is derived, and its pretreatment. Because of its varied composition, organisms designed for CBP must produce digestive enzymes that can accommodate a variety of substrates, in a variety of conformations, in a variety of reaction environments. To date, efficient usage of lignocellulosic substrates requires the addition of external enzymes at high levels. However, externally added enzymes are costly. Therefore, it would be very beneficial to isolate cellulases from cellulolytic organisms with high specific activity and high expression levels in host organisms, such as the yeast S. cerevisiae in order to achieve CBP. Also, in order to use lignocellulosic material with maximal efficiency, it would also be beneficial to discover combinations of paralogous and/or orthologous enzymes that work synergistically to achieve more efficient break down of lignocellulosic components.

Beyond fungi, there are a large variety of cellulolytic bacteria that can be used as gene donors for expression of lignocellulolytic enzymes in yeast. In one aspect, the present invention is drawn to identifying cellulolytic enzymes from a variety of organisms and subsequently identifying enzymes that work in maximally efficient combinations to digest lignocellulosic material. Given the diversity of cellulolytic bacteria, classification of these organisms based on several parameters (Lynd, L. R., et al., Microbial Cellulose Utilization: Fundamentals and Biotechnology. Microbiol. Mol. Biol. Rev., 66:506-577 (2002)) can inform the choice of gene donors. The following are distinguishing characteristics: (A) aerobic vs. anaerobic, (B) mesophiles vs. thermophiles; and (C) noncomplexed, cell free enzymes vs. complexed, cell bound enzymes.

Another consideration when defining the needed set of enzymatic activities is to attempt to characterize the linkages in a lignocellulosic substrate. FIGS. 1A-1D provide an overview of the carbohydrate structures present in plant material given in Van Zyl, W. H., et al., Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae, Adv. Biochem. Eng. Biotechnol., 108:205-235 (2007). Intl Pub. No. WO2011/153516, which is herein incorporated by reference, provides an analysis of hardwood substrate.

BRIEF SUMMARY OF THE INVENTION

Aspects of the invention are directed to a multi-enzyme system that is able to convert up to about 95% of the oligomers present in a process stream to monomers. In some embodiments, the invention is directed to host cells that express components of the multi-enzyme system.

In one aspect of the present invention, a multi-component enzyme system is identified and expressed in yeast, such as Saccharomyces cerevisiae. In its purified form, the enzyme system is able to convert up to about 95% of the oligomers present in a process stream to monomer at low enzyme loadings. The enzyme system is far more efficient for hydrolyzing hemicellulose oligomers from hardwood as compared to several commercially available enzyme products, achieving high yield at ˜2.5 mg enzyme per gram of total xylose present (determined by acid hydrolysis of starting material), whereas only low yields were achieved with commercial enzymes at 10 mg/g xylose present. In addition, other aspects of the invention present the engineering of a series of biocatalysts combining the expression and secretion of components of this enzymatic system with robust, rapid xylose utilization, and ethanol fermentation under industrially relevant process conditions for consolidate bioprocessing. Other aspects of this invention utilize a co-culture of strains that achieve significantly improved performance due to the incorporation of additional enzymes in the fermentation system. These strains and combinations thereof provide a way to directly convert the oligomers produced during the pretreatment of lignocellulosic feedstocks into ethanol without introducing additional processing steps like acid hydrolysis or enzymatic hydrolysis.

In one embodiment, the invention relates to a recombinant yeast host cell, comprising: a heterologous polynucleotide comprising a nucleic acid which encodes an acetylxylanesterase; a heterologous polynucleotide comprising a nucleic acid which encodes a xylanase; and a heterologous polynucleotide comprising a nucleic acid which encodes a xylosidase. In some embodiments, the polynucleotide encoding acetylxylanesterase comprises a nucleic acid which encodes a polypeptide comprising an amino acid sequence at least about 90%, 95%, 96%, 97%, 98% or 99% identical to any one of SEQ ID NOs:6-10. In some embodiments, the polynucleotide encoding xylanase comprises a nucleic acid which encodes a polypeptide comprising an amino acid sequence at least about 90%, 95%, 96%, 97%, 98% or 99% identical to any one of SEQ ID NOs:37-62. In some embodiments, the heterologous polypeptide encoding xylosidase comprises a nucleic acid which encodes a polypeptide comprising an amino acid sequence at least about 90%, 95%, 96%, 97%, 98% or 99% identical to any one of SEQ ID NOs:78-92. In some embodiments, the acetylxylanesterase, the xylanase, or the xylosidase comprise a histidine tag.

In some embodiments of the invention, the recombinant host cell comprises at least one saccharolytic enzyme and further comprises a heterologous polynucleotide comprising a nucleic acid which encodes a galactosidase. In some embodiments, the heterologous polypeptide encoding galactosidase comprises a nucleic acid which encodes a polypeptide comprising an amino acid sequence at least about 90%, 95%, 96%, 97%, 98% or 99% identical to any one of SEQ ID NOs:108-122. In some embodiments of the invention, the recombinant host cell comprises at least one saccharolytic enzyme and further comprises a heterologous polynucleotide comprising a nucleic acid which encodes a mannosidase. In some embodiments, the heterologous polypeptide encoding mannosidase comprises a nucleic acid which encodes a polypeptide comprising an amino acid sequence at least about 90%, 95%, 96%, 97%, 98% or 99% identical to any one of SEQ ID NOs:146-168. In some embodiments of the invention, the recombinant host cell comprises at least one saccharolytic enzyme and further comprises a heterologous polynucleotide comprising a nucleic acid which encodes an alpha-glucuronidase. In some embodiments, the heterologous polypeptide encoding alpha-glucuronidase comprises a nucleic acid which encodes a polypeptide comprising an amino acid sequence at least about 90%, 95%, 96%, 97%, 98% or 99% identical to any one of SEQ ID NOs:184-198.

In some embodiments, the recombinant host cell comprises nucleic acids encoding polypeptides comprising amino acid identical to SEQ ID NOs:8, 37, and 78. In some embodiments, the host cell further comprises a nucleic acid which encodes a polypeptide comprising an amino acid sequence that encodes for alpha-galactosidase. In some embodiments, the nucleic acid is SEQ ID NO:108. In some embodiments, the host cell further comprises a nucleic acid which encodes a polypeptide comprising an amino acid sequence that encodes for mannosidase. In some embodiments, the nucleic acid is SEQ ID NO:146. In some embodiments, the host cell further comprises a nucleic acid which encodes a polypeptide comprising an amino acid sequence that encodes for alpha-glucuronidase. In some embodiments, the nucleic acid is SEQ ID NO:184. In some embodiments, the recombinant yeast host is yeast strain M3222, M3701, M3702, M3703, or M4059.

In some embodiments, the recombinant host cell further comprises a heterologous polynucleotide comprising a nucleic acid which encodes an acetyl esterase. In some embodiments, the nucleic acid which encodes an acetyl esterase encodes a polypeptide comprising an amino acid sequence at least about 90% identical to any one of SEQ ID NOs:223-225. In some embodiments, the nucleic acid which encodes an acetyl esterase encodes a polypeptide comprising an amino acid sequence identical to any one of SEQ ID NOs:223-225.

In some embodiments, the recombinant host cell further comprises a heterologous polynucleotide comprising a nucleic acid which encodes an alpha-glucuronidase. In some embodiments, the nucleic acid which encodes an alpha-glucuronidase encodes a polypeptide comprising an amino acid sequence at least about 90%, 95%, 96%, 97%, 98% or 99% identical to any one of SEQ ID NOs:185-198. In some embodiments, the nucleic acid which encodes an alpha-glucuronidase encodes a polypeptide comprising an amino acid sequence identical to any one of SEQ ID NOs:185-198. In other embodiments, the recombinant host cell further comprises a heterologous polynucleotide comprising a nucleic acid which encodes a beta-glucosidase. In some embodiments, the nucleic acid which encodes a beta-glucosidase encodes a polypeptide comprising an amino acid sequence at least about 90%, 95%, 96%, 97%, 98% or 99% identical to any one of SEQ ID NOs:92, 164-168, 226 and 227. In some embodiments, the nucleic acid which encodes a beta-glucosidase encodes a polypeptide comprising an amino acid sequence identical to any one of SEQ ID NOs: 92, 164-168, 226 and 227.

In some embodiments, the recombinant host cell further comprises a heterologous polynucleotide comprising a nucleic acid which encodes an alpha-galactosidase. In some embodiments, the nucleic acid which encodes an alpha-galactosidase encodes a polypeptide comprising an amino acid sequence at least about 90%, 95%, 96%, 97%, 98% or 99% identical to any one of SEQ ID NOs:108-122. In some embodiments, the nucleic acid which encodes an alpha-galactosidase encodes a polypeptide comprising an amino acid sequence identical to any one of SEQ ID NOs:108-122.

In some embodiments, the recombinant host cell further comprises a heterologous polynucleotide comprising a nucleic acid which encodes a β-mannosidase. In some embodiments, the nucleic acid which encodes the β-mannosidase encodes a polypeptide that is at least about 90%, 95%, 96%, 97%, 98% or 99% identical to a sequence selected from SEQ ID NOs:147-168. In some embodiments, the nucleic acid which encodes the β-mannosidase encodes a polypeptide that is identical to a sequence selected from SEQ ID NOs:147-168.

In other embodiments, the recombinant host cell further comprises a heterologous polynucleotide comprising a nucleic acid which encodes an alpha-galactosidase. In some embodiments, the nucleic acid which encodes an alpha-galactosidase encodes a polypeptide comprising an amino acid sequence at least about 90%, 95%, 96%, 97%, 98% or 99% identical to any one of SEQ ID NOs:108-122. In some embodiments, the nucleic acid which encodes an alpha-galactosidase encodes a polypeptide comprising an amino acid sequence identical to any one of SEQ ID NOs:108-122. In some embodiments, the recombinant host cell further comprises a heterologous polynucleotide comprising a nucleic acid which encodes an endoglucanase. In some embodiments, the nucleic acid which encodes an endoglucanase encodes a polypeptide comprising an amino acid sequence at least about 90%, 95%, 96%, 97%, 98% or 99% identical to any one of SEQ ID NOs:289-345. In some embodiments, the nucleic acid which encodes an endoglucanase encodes a polypeptide comprising an amino acid sequence identical to any one of SEQ ID NOs:289-345.

In some embodiments of the invention, at least one heterologous polynucleotide is expressed by a recombinant yeast host cell. In some embodiments, at least one of the heterologous polynucleotides expresses a polypeptide that is secreted by the recombinant yeast host cell.

In some embodiments of the invention, the recombinant yeast host cell ferments a lignocellulosic material to produce a fermentation product. In some embodiments, the fermentation product is ethanol, lactic acid, hydrogen, butyric acid, acetone, isopropyl alcohol or butanol. In some embodiments, the lignocellulosic material is insoluble cellulose, crystalline cellulose, pretreated hardwood, paper sludge, pretreated corn stover, pretreated sugar cane bagasse, pretreated corn cobs, pretreated switchgrass, pretreated municipal solid waste, pretreated distiller's dried grains, pretreated wheat straw, corn fiber, or agave. In some embodiments the recombinant yeast host cell ferments at least about 20% of xylo-oligomers in the lignocellulosic material. In some embodiments, the recombinant yeast host cell hydrolyzes at least about 50% of xylo-oligomers in the lignocellulosic material to monomers during fermentation of the recombinant yeast host cell. In some embodiments, the recombinant yeast host cell hydrolyzes about 20% to about 80% of xylo-oligomers in the lignocellulosic material to monomers during fermentation of the recombinant yeast host cell.

In some embodiments of the invention, the yeast strain has a specific growth rate (h−1) of at least about 0.05 in a culture medium containing xylose as the primary sugar source. In some embodiments, the yeast strain has a specific growth rate (h−1) of about 0.05 to about 0.5 in a culture medium containing xylose as the primary sugar source. In some embodiments, the xylose in the culture medium is fermented in about 40 hours or less. In some embodiments, the xylose in the culture medium is at an initial concentration of at least 30 g/L. In some embodiments, fermentation of the recombinant yeast host cell produces an ethanol yield of at least about 15% more ethanol than is produced by a non-recombinant yeast.

In some embodiments of the invention, the recombinant yeast host cell comprising at least one saccharolytic enzyme further comprises a deletion or alteration of one or more glycerol producing enzymes. In some embodiments, the recombinant yeast host cell further comprises a deletion or alteration of GPD1.

One aspect of the invention is directed to a composition comprising a lignocellulosic material and a recombinant yeast host cell comprising as least one saccharolytic enzyme. Another aspect of the invention is directed to a media supernatant generated by incubating a recombinant yeast host comprising as least one saccharolytic enzyme with a medium containing a carbon source. In some embodiments, the carbon source comprises a lignocellulosic material. In some embodiments, the lignocellulosic material is insoluble cellulose, crystalline cellulose, pretreated hardwood, paper sludge, pretreated corn stover, pretreated sugar cane bagasse, pretreated corn cobs, pretreated switchgrass, pretreated municipal solid waste, pretreated distiller's dried grains, pretreated wheat straw, corn fiber, or agave.

Another aspect of the invention is directed to a method of producing a fermentation product comprising: combining a recombinant yeast host cell comprising at least one saccharolytic enzyme with a lignocellulosic material; allowing the recombinant yeast host cell to ferment the lignocellulosic material; and recovering a fermentation product produced by the recombinant yeast host cell. In some embodiments, the lignocellulosic material is insoluble cellulose, crystalline cellulose, pretreated hardwood, paper sludge, pretreated corn stover, pretreated sugar cane bagasse, pretreated corn cobs, pretreated switchgrass, pretreated municipal solid waste, pretreated distiller's dried grains, pretreated wheat straw, corn fiber, or agave. In some embodiments, the fermentation product is ethanol, lactic acid, hydrogen, butyric acid, acetone, or butanol.

In some embodiments, the invention relates to a recombinant yeast host cell comprising a heterologous polynucleotide encoding a polypeptide comprising an amino acid sequence at least about 90%, 95%, 96%, 97%, 98% or 99% identical to any one of the amino acid sequences of SEQ ID NOs:108, 115-122, 146, 155-168, 184, 188-197, 215-225, 227 and 228, or a combination thereof.

One aspect of the invention is directed to a co-culture comprising two or more different recombinant yeast host cells each comprising as least one saccharolytic enzyme. In some embodiments, one of the host cells of the co-culture is a recombinant yeast host cell comprising a heterologous polynucleotide comprising a nucleic acid which encodes a mannanase, a mannosidase, an endoglucanase, a beta-glucosidase, or an acetyl esterase, or a combination thereof. In some embodiments, the heterologous polynucleotide comprises a nucleic acid which encodes a polypeptide comprising an amino acid sequence at least about 90%, 95%, 96%, 97%, 98% or 99% identical to any one of SEQ ID NOs:55, 92, 146, 147, 160-163, 215-230 and 289-345.

In some embodiments, the invention is direct to a co-culture comprising a recombinant host cell comprising at least one saccharolytic enzyme, a recombinant yeast host cell comprising a heterologous polynucleotide comprising a nucleic acid which encodes a mannanase or mannosidase; a recombinant yeast host cell comprising a heterologous polynucleotide comprising a nucleic acid which encodes an endoglucanase; a recombinant yeast host cell comprising a heterologous polynucleotide comprising a nucleic acid which encodes a beta-glucosidase; and a recombinant yeast host cell comprising a heterologous polynucleotide comprising a nucleic acid which encodes an acetyl esterase.

In some embodiments, the invention is directed to a co-culture comprising a recombinant yeast host cell comprising at least one saccharolytic enzyme, a recombinant yeast host cell comprising a heterologous polynucleotide comprising a nucleic acid which encodes a polypeptide comprising an amino acid sequence at least about 90%, 95%, 96%, 97%, 98% or 99% identical to any one of SEQ ID NOs:146, 147, 160-163, 215-222, and 228-230; a recombinant yeast host cell comprising a heterologous polynucleotide comprising a nucleic acid which encodes a polypeptide comprising an amino acid sequence at least about 90%, 95%, 96%, 97%, 98% or 99% identical to any one of SEQ ID NOs:54 and 289-345; a recombinant yeast host cell comprising a heterologous polynucleotide comprising a nucleic acid which encodes a polypeptide comprising an amino acid sequence at least about 90%, 95%, 96%, 97%, 98% or 99% identical to any one of SEQ ID NOs:92, 226, and 227; and a recombinant yeast host cell comprising a heterologous polynucleotide comprising a nucleic acid which encodes a polypeptide comprising an amino acid sequence at least about 90%, 95%, 96%, 97%, 98% or 99% identical to any one of SEQ ID NOs:223-225.

In some embodiments, the co-culture comprises a recombinant yeast host cell comprising at least one saccharolytic enzyme and further comprises a recombinant yeast host cell comprising a heterologous polynucleotide comprising a nucleic acid which encodes a polypeptide comprising an amino acid sequence identical to SEQ ID NO:146; a recombinant yeast host cell comprising a heterologous polynucleotide comprising a nucleic acid which encodes a polypeptide comprising an amino acid sequence identical to SEQ ID NO:147; a recombinant yeast host cell comprising a heterologous polynucleotide comprising a nucleic acid which encodes a polypeptide comprising an amino acid sequence identical to SEQ ID NO:289; a recombinant yeast host cell comprising a heterologous polynucleotide comprising a nucleic acid which encodes a polypeptide comprising an amino acid sequence identical to SEQ ID NO:226; and a recombinant yeast host cell comprising a heterologous polynucleotide comprising a nucleic acid which encodes a polypeptide comprising an amino acid sequence identical to SEQ ID NO:224.

In some embodiments, the co-culture comprises a recombinant yeast host cell comprising at least one saccharolytic enzyme and further comprises one or more yeast strains selected from M3318, M2295, M3240, M3460, M4494, M5754, M5970, M5891, or any other strain described herein. In some embodiments, the co-culture comprises a recombinant yeast host cell comprising at least one saccharolytic enzyme and the yeast strains M3318, M2295, M3240, M3460, and M4494.

In some embodiments, the invention is directed to an expression vector comprising a polynucleotide comprising a nucleic acid encoded by any one of SEQ ID NOs:347-358, 447-489 or 577-581. In some embodiments, the invention is directed to an expression vector pMU3150, pMU3151, pMU3217, pMU3218, pMU3152, pMU3153, pMU3154, pMU3155, pMU3156, pMU3157, pMU3219, pMU3158, pMU3159, pMU3220, pMU3160, pMU3221, pMU3222, pMU3161, pMU3162, pMU3163, pMU3223, pMU3164, pMU3165, pMU3224, pMU3166, pMU3167, pMU3129, pMU3168, pMU3169, pMU3170, pMU3130, pMU3131, pMU3132, pMU3133, pMU3134, pMU3135, pMU3136, pMU3171, pMU3172, pMU3173, pMU3174, pMU3175, pMU3137, pMU3138, pMU3139, pMU2981, pMU2659, pMU2877, pMU2745, pMU2746, pMU2873 or pMU2879.

In some embodiments, the yeast strain is M3799 or M3059. In some embodiments, the yeast strain is M3222, M3701, M3702, M3703, M4059, M3318, M2295, M3240, M3460, M4494, M4170, M2963, M4042, M4044, M4638, M4642, M4777, M4782, M4821, M4836, M4888, M5401, M5870, M5754, M5891 or M5453. In some embodiments, the yeast strain is transformed with an expression vector comprising a polynucleotide comprising a nucleic acid encoded by any one of SEQ ID NOs:347-358, 447-489 or 577-581. In some embodiments, the yeast strain is transformed with pMU3150, pMU3151, pMU3217, pMU3218, pMU3152, pMU3153, pMU3154, pMU3155, pMU3156, pMU3157, pMU3219, pMU3158, pMU3159, pMU3220, pMU3160, pMU3221, pMU3222, pMU3161, pMU3162, pMU3163, pMU3223, pMU3164, pMU3165, pMU3224, pMU3166, pMU3167, pMU3129, pMU3168, pMU3169, pMU3170, pMU3130, pMU3131, pMU3132, pMU3133, pMU3134, pMU3135, pMU3136, pMU3171, pMU3172, pMU3173, pMU3174, pMU3175, pMU3137, pMU3138, pMU3139, pMU2981, pMU2659, pMU2877, pMU2745, pMU2746, pMU2873 or pMU2879.

In some embodiments, the yeast strain comprises a heterologous polynucleotide encoding a polypeptide comprising an amino acid sequence at least about 90%, 95%, 96%, 97%, 98% or 99% identical to any one of the amino acid sequences of SEQ ID NOs:8, 37, 78, 108, 140, 141, 146, 147, 184, 224, 228, 289, and 346. In some embodiments, the yeast strain comprises heterologous polynucleotides encoding a polypeptides comprising an amino acid sequence at least about 90%, 95%, 96%, 97%, 98% or 99% identical to all of the amino acid sequences of SEQ ID NOs:8, 37, 78, 108, 140, 141, 146, 147, 184, 224, 228, 289, and 346. In some embodiments, the recombinant yeast host cell further comprises a deletion or alteration of one or more glycerol producing enzymes. In some embodiments, the recombinant yeast host cell further comprises a deletion or alteration of GPD1.

In some embodiments, the invention is directed to a composition, comprising an acetylxylanesterase, xylanase, and xylosidase. In some embodiments, the acetylxylanesterase of the composition comprises an amino acid sequence that is at least about 90%, 95%, 96%, 97%, 98% or 99% identical to a sequence selected from SEQ ID NOs:6-10. In some embodiments, the xylanase of the composition comprises an amino acid sequence that is at least about 90%, 95%, 96%, 97%, 98% or 99% identical to a sequence selected from SEQ ID NOs:37-62. In some embodiments, the xylosidase comprises an amino acid sequence that is at least about 90%, 95%, 96%, 97%, 98% or 99% identical to a sequence selected from SEQ ID NOs:78-92. In some embodiments, the composition further comprises a galactosidase. In some embodiments, the galactosidase of the composition comprises an amino acid sequence that is at least about 90%, 95%, 96%, 97%, 98% or 99% identical to a sequence selected from SEQ ID NOs:108-122. In some embodiments, the composition further comprises a mannosidase or mannanase. In some embodiments, the mannosidase or mannanase of the composition comprises an amino acid sequence that is at least about 90%, 95%, 96%, 97%, 98% or 99% identical to a sequence selected from SEQ ID NOs:146-168. In some embodiments, the composition further comprises an alpha-glucuronidase. In some embodiments, the alpha-glucuronidase of the composition comprises an amino acid sequence that is at least about 90%, 95%, 96%, 97%, 98% or 99% identical to a sequence selected from SEQ ID NOs:184-198. In some embodiments, the composition further comprises an acetyl esterase. In some embodiments, the acetyl esterase of the composition comprises an amino acid sequence that is at least about 90%, 95%, 96%, 97%, 98% or 99% identical to a sequence selected from SEQ ID NOs:223-225. In some embodiments, the composition further comprises a glucosidase. In some embodiments, the glucosidase of the composition further comprises an amino acid sequence that is at least about 90%, 95%, 96%, 97%, 98% or 99% identical to a sequence selected from SEQ ID NOs:226-227. In some embodiments, the composition further comprises an endoglucanase. In some embodiments, the endoglucanase of the composition comprises an amino acid sequence that is at least about 90%, 95%, 96%, 97%, 98% or 99% identical to a sequence selected from SEQ ID NOs:289-345. In some embodiments, the composition further comprises a glucuronyl esterase. In some embodiments, the glucuronyl esterase of the composition comprises an amino acid sequence that is at least about 90%, 95%, 96%, 97%, 98% or 99% identical to the sequence of SEQ ID NO:346.

In some embodiments, one or more enzymes in the composition are purified. In some embodiments, the one or more enzymes are purified from a recombinant yeast host cell of the invention, a composition of the invention, a media supernatant of the invention, a co-culture of the invention, or a yeast strain of the invention. In some embodiments, one or more enzymes in the composition are from a crude extract. In some embodiments, the crude extract is from a recombinant yeast host cell of the invention, a composition of the invention, a media supernatant of the invention, a co-culture of the invention, or a yeast strain of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A-1D depict the complexity of cellulose and hemicellulose and the enzymes involved in their degradation. Cellulose (FIG. 1A) and hemicellulose structures for arabinoxylan (FIG. 1B), galactomannan (FIG. 1C), and xyloglucan (FIG. 1D) are depicted. Hexoses are distinguished from pentoses by the presence of a protruding line from the cyclic hexagon (pyranose ring), depicting the CH2OH group. Hydrolase enzymes and the bonds targeted for cleavage in the four polysaccharide structures are indicated by arrow.

FIG. 2 depicts a time course of adaptation of M2874 to hardwood derived C5 containing liquor. For the first ˜400 hours, the reactor was run as a chemostat, with constant feed rate and pH control via NH4OH. Subsequently, a second feed vessel containing C5 liquor was attached and the pH of the culture vessel was maintained by feeding additional C5 liquor (feed pH is higher than pH set point and growing organisms are constantly decreasing the culture vessel pH). Growth rate and percentage of C5 liquor were determined by measuring the mass of feed entering the reactor over time.

FIG. 3 depicts a comparison of several strains during batch fermentation of C5 liquor, which had been previously hydrolyzed with purified enzymes to yield monomer sugar. Time courses for xylose consumption and ethanol production are shown. The acetic acid concentration for the M3799 fermentation is also shown.

FIG. 4 depicts a comparison of M3059 and parental strain M2433 during batch fermentation of C5 liquor hydrolyzed with acid to yield monomer sugar. Several different concentrations of sugars were used to compare the strains.

FIG. 5 depicts a schematic of substituted and non-substituted oligomers, and the enzymatic activities required to hydrolyze them, in hardwood derived C5 liquors. “XO” represents xylo-oligomers. This figure is adapted from Shallom, D., & Shoham, Y., Microbial hemicellulases. Current Opinion in Microbiology, 6:219-228 (2003); and Spánikova, S., & Biely, P., Glucuronoyl esterase-novel carbohydrate esterase produced by Schizophyllum commune. FEBS letters, 580:4597-601 (2006).

FIG. 6 depicts hydrolysis data for C5 liquor hydrolysis via commercial enzyme preparations. Enzymes were loaded at 10 mg/g xylose (as determined by acid hydrolysis of the starting material) and incubated with C5 liquor and buffer at 50° C., and sugar release was determined by HPLC analysis. Data shown is from 24 hours of hydrolysis, but reaction products did not increase thereafter.

FIG. 7 depicts individual yeast produced and purified components tested individually and in combination for the hydrolysis of hardwood derived C5 liquor. In this assay, liquor MS712D was loaded at approximately 75 g/L total xylose concentration (determined by acid hydrolysis of the starting material). The enzymes were loaded at a constant total enzyme loading of 1 mg enzyme protein (EP) per gram of total xylose.

FIG. 8 depicts individual yeast produced and purified components tested in combination with “Fav4” (FC7, FC16, FC138 and FC36) for the hydrolysis of hardwood derived C5 liquor. In this assay, liquor MS712D was loaded at approximately 75 g/L total xylose concentration as determined by acid hydrolysis of the starting material.

FIG. 9 depicts yeast produced and purified components tested in combination with Fav4 and FC140 for the hydrolysis of hardwood derived C5 liquor. In this assay, liquor MS712D was loaded at approximately 50 g/L total xylose concentration as determined by acid hydrolysis of the starting material.

FIG. 10 depicts yeast produced and purified components tested in combination with “Fav6” (FC7, FC138, FC36, FC16, FC140 and FC72) for the hydrolysis of hardwood derived C5 liquor. In this assay, liquor MS712D was loaded at approximately 50 g/L total xylose concentration as determined by acid hydrolysis of the starting material.

FIG. 11 depicts yeast produced and purified components tested in combination with Fav6 for the hydrolysis of hardwood derived C5 liquor. In this assay, liquor MS712D was loaded at approximately 50 g/L total xylose concentration as determined by acid hydrolysis of the starting material. The data was generated using the BioRad Aminex 87P HPLC column to determine the amount of minor component sugars released relative to control (blank).

FIG. 12 depicts yeast produced and purified components tested in combination with Fav6 for the hydrolysis of hardwood derived C5 liquor. In this assay, liquor MS712D was loaded at approximately 50 g/L total xylose concentration as determined by acid hydrolysis of the starting material. The data was generated using the BioRad Aminex 87H HPLC column to determine the amount of major component sugars released relative to control (blank).

FIG. 13 depicts yeast produced and purified components tested in combination with Fav6 for the release of acetate from hardwood derived C5 liquor. In this assay, liquor MS712D was loaded at approximately 50 g/L total xylose concentration as determined by acid hydrolysis of the starting material. The data was generated using the BioRad Aminex 87H HPLC column.

FIG. 14 depicts yeast produced and purified components tested in combination with Fav6 for the release of minor component sugars from hardwood derived C5 liquor. In this assay, liquor MS712D was loaded at approximately 50 g/L total xylose concentration as determined by acid hydrolysis of the starting material. The data was generated using the BioRad Aminex 87P HPLC column.

FIG. 15 depicts yeast produced and purified components tested in combination with Fav6 for the release of xylose from hardwood derived C5 liquor. In this assay, liquor MS712D was loaded at approximately 50 g/L total xylose concentration as determined by acid hydrolysis of the starting material. The data was generated using the BioRad Aminex 87P HPLC column.

FIG. 16 depicts yeast produced and purified components tested in combination with Fav6 for the release of monomer sugars from hardwood derived C5 liquor. In this assay, liquor MS712D was loaded at approximately 50 g/L total xylose concentration as determined by acid hydrolysis of the starting material. The data was generated using the BioRad Aminex 87H HPLC column.

FIG. 17 depicts yeast produced and purified components tested in combination for the release of monomer sugars from hardwood derived C5 liquor. In the cases with a “then” in the label, one or more enzymes from the “Fav8” group (FC7, FC16, FC36, FC72, FC138, FC139, FC140 and FC144) were added first and allowed to incubate for ˜16 hours before the rest of the enzyme(s) were added, and allowed to incubate. In this assay, liquor MS712D was loaded at approximately 50 g/L total xylose concentration as determined by acid hydrolysis of the starting material. The data was generated using the BioRad Aminex 87H HPLC column.

FIG. 18 depicts yeast produced and purified components tested in different ratios for the release of monomer sugars from hardwood derived C5 liquor. In this assay, liquor MS1011 was loaded at approximately 50 g/L total xylose concentration as determined by acid hydrolysis of the starting material. The data was generated using the BioRad Aminex 87H HPLC column.

FIG. 19 depicts data from 24 hours of hydrolysis by ratios of enzymes for which 120 hour data is shown in FIG. 18.

FIG. 20 depicts data from the same assay carried out in FIG. 18, but the data shown was generated using the BioRad Aminex 87P HPLC column to examine the minor sugar components.

FIG. 21 depicts yeast produced and purified α-glucuronidase components (loaded at 1 mg/g) tested in combination with the “Fav10” group (FC36, FC138, FC7, FC16, FC140, FC72, FC139, FC142, FC136 and FC124; loaded at 1.2 mg/g) for the release of monomer sugars from hardwood derived C5 liquor. In this assay, liquor MS1011 (1011) was loaded at approximately 50 g/L total xylose concentration as determined by acid hydrolysis of the starting material. The data was generated using the BioRad Aminex 87H HPLC column.

FIG. 22 depicts a fermentation of C5 liquor carried out using strain M3222, which produces FC7, FC36 and FC138. After the reaction had stopped at 144 hours of fermentation, the residuals were analyzed by HPAEC-PAD using the Dionex PA-100 column. The residuals were also subjected to hydrolysis by combinations of enzymes, including FC136 alone, FC36 alone, and the combination of FC136 and FC36.

FIG. 23 depicts a time course hydrolysis of C5 liquor by a set of 11 enzymes determined from the previous experiments. Two different liquors were used in this experiment, MS1032 and MS1034. The enzyme system was made up of FC138, FC36, FC7, FC16, FC141, FC72, FC139, FC142, FC145, FC136 and FC124, and was loaded at a total of 2.5 mg enzyme protein/g xylose (xylose in starting material was determined by acid hydrolysis). FC36 was loaded at 24% of the total, FC124 was loaded at 4% of the total, and the rest of the enzymes were loaded at 8% of the total.

FIG. 24 depicts the performance of CBP strains expressing different combinations of hemicellulose enzymes in hydrolyzing and fermenting hardwood derived soluble oligomers (Substrate=MS712D, approximately 120 g/L total sugars loaded as determined by acid hydrolysis). The experiment was carried out as a fed batch of concentrated oligomers in 2 L working volume reactor with pH controlled at 5.5, temperature controlled at 35° C., and agitation at 300 rpm.

FIG. 25 depicts the performance of CBP strains with and without glycerol reduction technology in hydrolyzing and fermenting hardwood derived soluble oligomers (Substrate=MS712D, ˜120 g/L sugars loaded as assessed by acid hydrolysis of starting material). The experiment was carried out as a fed batch of concentrated oligomers in 2 L working volume reactor with pH controlled at 5.5, temperature controlled at 35° C., and agitation at 300 rpm.

FIG. 26 depicts the improvement of CBP strains with glycerol reduction technology and expression of five enzymes in hydrolyzing and fermenting hardwood derived soluble oligomers (Substrate=MS1062-CC-100-A, approximately 75 g/L total sugars loaded as determined by acid hydrolysis of the starting material), compared to expression of three enzymes. The experiment was carried out as a fed batch of concentrated oligomers in 2 L working volume reactor with pH controlled at 5.5, temperature controlled at 35° C., and agitation at 300 rpm.

FIG. 27 depicts the performance of a co-culture of CBP strains, five expressing a single enzyme, combined with a strain (M4059) expressing five enzymes, in hydrolyzing and fermenting hardwood derived soluble oligomers (Substrate=MS1062-CC-100-A, ˜61 g/L of total sugars loaded as determined by acid hydrolysis of the starting material), compared to expression of three enzymes. The experiment was carried out as a fed batch of concentrated oligomers in 2 L working volume reactor with pH controlled at 5.5, temperature controlled at 35° C., and agitation at 300 rpm.

FIG. 28 depicts a plasmid map for pMU3150.

FIG. 29 depicts a plasmid map for pMU3151.

FIG. 30 depicts a plasmid map for pMU3217.

FIG. 31 depicts a plasmid map for pMU3218.

FIG. 32 depicts a plasmid map for pMU3152.

FIG. 33 depicts a plasmid map for pMU3153.

FIG. 34 depicts a plasmid map for pMU3154

FIG. 35 depicts a plasmid map for pMU3155.

FIG. 36 depicts a plasmid map for pMU3156.

FIG. 37 depicts a plasmid map for pMU3157.

FIG. 38 depicts a plasmid map for pMU3219.

FIG. 39 depicts a plasmid map for pMU3158.

FIG. 40 depicts a plasmid map for pMU3159.

FIG. 41 depicts a plasmid map for pMU3220.

FIG. 42 depicts a plasmid map for pMU3160.

FIG. 43 depicts a plasmid map for pMU3221.

FIG. 44 depicts a plasmid map for pMU3222.

FIG. 45 depicts a plasmid map for pMU3161.

FIG. 46 depicts a plasmid map for pMU3162.

FIG. 47 depicts a plasmid map for pMU3163.

FIG. 48 depicts a plasmid map for pMU3223.

FIG. 49 depicts a plasmid map for pMU3164.

FIG. 50 depicts a plasmid map for pMU3165,

FIG. 51 depicts a plasmid map for pMU3224.

FIG. 52 depicts a plasmid map for pMU3166.

FIG. 53 depicts a plasmid map for pMU3167.

FIG. 54 depicts a plasmid map for pMU3129.

FIG. 55 depicts a plasmid map for pMU3168.

FIG. 56 depicts a plasmid map for pMU3169.

FIG. 57 depicts a plasmid map for pMU3170.

FIG. 58 depicts a plasmid map for pMU3130.

FIG. 59 depicts a plasmid map for pMU3131.

FIG. 60 depicts a plasmid map for pMU3132.

FIG. 61 depicts a plasmid map for pMU3133.

FIG. 62 depicts a plasmid map for pMU3134.

FIG. 63 depicts a plasmid map for pMU3135.

FIG. 64 depicts a plasmid map for pMU3136.

FIG. 65 depicts a plasmid map for pMU3171.

FIG. 66 depicts a plasmid map for pMU3172.

FIG. 67 depicts a plasmid map for pMU3173.

FIG. 68 depicts a plasmid map for pMU3174.

FIG. 69 depicts a plasmid map for pMU3175.

FIG. 70 depicts a plasmid map for pMU3137.

FIG. 71 depicts a plasmid map for pMU3138.

FIG. 72 depicts a plasmid map for pMU3139.

FIG. 73 depicts a plasmid map for pMU2981.

FIG. 74 depicts a plasmid map for pMU2659.

FIG. 75 depicts a comparison of several strains during batch fermentation of C5 liquor MS1011, which had been previously acid hydrolyzed to yield monomer sugar and loaded at 45 g/L total sugars. The fermentation started at pH 6.5 and contained CSL, DAP and CaCO3. Time courses for ethanol production (FIG. 75A) and xylose consumption (FIG. 75B) are shown. The acetic acid concentration (FIG. 75C) for the fermentations is also shown.

FIG. 76 depicts a comparison of M4638 to parental strain M3799 during batch fermentation of C5 liquor MS1063, which had been previously acid hydrolyzed to yield monomer sugar. C5 liquor was loaded at either 120 g/L or 84 g/L total sugars. Time courses for xylose consumption and ethanol production are shown. The acetic acid concentration for the fermentations are also shown. Fermentations were run at 35° C. at pH 6.0 (FIG. 76A) or 6.5 (FIG. 76B) and were inoculated at 0.5 g/L DCW of strain.

FIG. 77 depicts a comparison of the adapted glycerol reduction strain, M4642, to parental strain M4044 during batch fermentation of C5 liquor MS1063, which had been previously acid hydrolyzed to yield monomer sugar. C5 liquor was loaded at 84 g/L total sugars. Time courses for xylose consumption and ethanol production are shown (FIG. 77A). The acetic acid concentration for the fermentations are also shown (FIG. 77A). Fermentations were run at 35° C. at pH 6.0 and were inoculated at 0.5 g/L DCW of strain. The glycerol levels are shown for the 84 g/L loading to demonstrate the reduction in glycerol production in strains engineered with the glycerol reduction pathway (FIG. 77B).

FIG. 78 depicts the performance of several M3799 derived CBP strains from a single round of engineering. Strains were tested for their ability to hydrolyze and ferment hardwood derived soluble oligomers (Substrate=MS1063). The experiment was carried out as a fed batch of concentrated oligomers to 110 g/L total sugars loading in 2 L working volume reactor with pH controlled at 6.0, temperature controlled at 35° C., and agitation at 300 rpm.

FIG. 79 depicts the performance of CBP engineered strains in hydrolyzing and fermenting hardwood derived soluble oligomers (Substrate=MS1080). Strains were constructed with two rounds of site directed engineering into M4638 and the glycerol reduction strain M4642. The experiment was carried out as a fed batch of concentrated oligomers to 86 g/L total sugars loading in 2 L working volume reactor with pH controlled at 6.0, temperature controlled at 35° C., and agitation at 300 rpm.

FIG. 80 depicts the secreted activity from top M3799 derived CBP strain. PNPX (left bar in each grouping of three bars), Birchwood xylan (middle bar in each grouping of three bars) and PNPA (right bar in each grouping of three bars) assays were used. M5401 was tested as biological replicates and compared to M4059, a M3059 derived CBP strain. Strains were grown aerobically for 48 hrs in YPD at 35° C., supernatants were harvested and used in standard enzyme assays.

FIG. 81 depicts the secreted activity from an 8 enzyme expressing CBP strain, M4888. Birchwood xylan, PNPA, PNP-gal and PNPX assays were used. A number of CBP strains were tested for their secreted activity on substrates to determine xylanase, AXE, AE, alpha-galactosidase and xylosidase activity produced by these strains. Strains were grown aerobically for 48 hrs in YPD at 35° C., supernatants were harvested and used in standard enzyme assays as described above.

FIG. 82 depicts a comparison of several strains during batch fermentation of C5 liquor MS1063 loaded at 45 g/L total sugars with a 0.5 g/L DCW inoculum. The fermentation started at pH 6.5 and contained CSL, DAP and CaCO3. The concentration of ethanol over time is shown (FIG. 82A). Xylose production, and ethanol production are shown (FIG. 82B).

FIG. 83 depicts a plasmid map for pMU2877.

FIG. 84 depicts a plasmid map for pMU2745.

FIG. 85 depicts a plasmid map for pMU2746.

FIG. 86 depicts a plasmid map for pMU2873.

FIG. 87 depicts a plasmid map for pMU2879.

FIG. 88 depicts the secreted activity from an 8 enzyme expressing CBP strain. PNPX, PNPA, PNP-gal and AZCL-galactomannan assays were used. The CBP strains were tested for their secreted activity on substrates to determine the xylosidase, AXE/AE and alpha-galactosidase activity produced by these strains (FIG. 88A). Mannosidase activity was measured from CBP and control strains using the insoluble AZCL-galactomarman substrate which is hydrolyzed by mannosidase to a soluble blue solution (FIG. 88B). The strains were grown aerobically for 48 hrs in YPD at 35° C., the supernatants were harvested and used in standard enzyme assays described herein.

FIG. 89 depicts the performance of CBP engineered strains in hydrolyzing and fermenting hardwood derived soluble oligomers (Substrate=MS1103 C5 liquor). M5401 was constructed with two rounds of site directed engineering into M4638 and a 3rd round of site directed engineering yielded M5870 from M5401. The experiment was carried out as a fed batch of concentrated oligomers at 86 g/L total sugars loading into a 2 L working volume reactor with pH controlled at 6.0, temperature controlled at 33° C., and agitation controlled at 300 rpm.

DETAILED DESCRIPTION OF THE INVENTION

The disclosed methods and materials are useful generally in the field of engineered yeast.

Definitions

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art of microbial metabolic engineering. Although methods and materials similar or equivalent to those described herein can be used in the practice of the disclosed methods and compositions, exemplary methods, devices and materials are described herein.

The embodiment(s) described, and references in the specification to “one embodiment”, “an embodiment”, “an example embodiment”, etc., indicate that the embodiment(s) described can include a particular feature, structure, or characteristic, but every embodiment does not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is understood that it is within the knowledge of one skilled in the art to effect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.

The description of “a” or “an” item herein refers to a single item or multiple items. It is understood that wherever embodiments are described herein with the language “comprising,” otherwise analogous embodiments described in terms of “consisting of” and/or “consisting essentially of” are also provided. Thus, for example, reference to “a polynucleotide” includes a plurality of such polynucleotides and reference to “the microorganism” includes reference to one or more microorganisms, and so forth.

A “vector,” e.g., a “plasmid” or “YAC” (yeast artificial chromosome) refers to an extrachromosomal element often carrying one or more genes that are not part of the central metabolism of the cell, and is usually in the form of a circular double-stranded DNA molecule. Such elements can be autonomously replicating sequences, genome integrating sequences, phage or nucleotide sequences, linear, circular, or supercoiled, of a single- or double-stranded DNA or RNA, derived from any source, in which a number of nucleotide sequences have been joined or recombined into a unique construction which is capable of introducing a promoter fragment and DNA sequence for a selected gene product along with appropriate 3′ untranslated sequence into a cell. Preferably, the plasmids or vectors of the present invention are stable and self-replicating.

An “expression vector” is a vector that is capable of directing the expression of genes to which it is operably associated.

The term “integrated” as used herein refers to genetic elements that are placed, through molecular biology techniques, into the genome of a host cell. For example, genetic elements can be placed into the chromosomes of the host cell as opposed to in a vector such as a plasmid carried by the host cell. Methods for integrating genetic elements into the genome of a host cell are well known in the art and include homologous recombination.

The term “heterologous” when used in reference to a polynucleotide, a gene, a polypeptide, or an enzyme refers to a polynucleotide, gene, polypeptide, or an enzyme not normally found in the host organism. “Heterologous” also includes a native coding region, or portion thereof, that is removed from the source organism and subsequently reintroduced into the source organism in a form that is different from the corresponding native gene, e.g., not in its natural location in the organism's genome. The heterologous polynucleotide or gene can be introduced into the host organism by, e.g., gene transfer. A heterologous gene can include a native coding region that is a portion of a chimeric gene including non-native regulatory regions that is reintroduced into the native host. Foreign genes can comprise native genes inserted into a non-native organism, or chimeric genes. A heterologous polynucleotide, gene, polypeptide, or an enzyme can be derived from any source, e.g., eukaryotes, prokaryotes, viruses, or synthetic polynucleotide fragments. The term “heterologous” as used herein also refers to an element of a vector, plasmid or host cell that is derived from a source other than the endogenous source. Thus, for example, a heterologous sequence could be a sequence that is derived from a different gene or plasmid from the same host, from a different strain of host cell, or from an organism of a different taxonomic group (e.g., different kingdom, phylum, class, order, family genus, or species, or any subgroup within one of these classifications). The term “heterologous” is also used synonymously herein with the term “exogenous.”

The term “domain” as used herein refers to a part of a molecule or structure that shares common physical or chemical features, for example hydrophobic, polar, globular, helical domains or properties, e.g., a DNA binding domain or an ATP binding domain. Domains can be identified by their homology to conserved structural or functional motifs. Examples of cellobiohydrolase (CBH) domains include the catalytic domain (CD) and the cellulose binding domain (CBD).

A “nucleic acid,” “polynucleotide,” or “nucleic acid molecule” is a polymeric compound comprised of covalently linked subunits called nucleotides. Nucleic acid includes polyribonucleic acid (RNA) and polydeoxyribonucleic acid (DNA), both of which can be single-stranded or double-stranded. DNA includes cDNA, genomic DNA, synthetic DNA, and semi-synthetic DNA.

An “isolated nucleic acid molecule” or “isolated nucleic acid fragment” refers to the phosphate ester polymeric form of ribonucleosides (adenosine, guanosine, uridine, or cytidine; “RNA molecules”) or deoxyribonucleosides (deoxyadenosine, deoxyguanosine, deoxythymidine, or deoxycytidine; “DNA molecules”), or any phosphoester analogs thereof, such as phosphorothioates and thioesters, in either single stranded form, or a double-stranded helix. Double stranded DNA-DNA, DNA-RNA and RNA-RNA helices are possible. The term nucleic acid molecule, and in particular DNA or RNA molecule, refers only to the primary and secondary structure of the molecule, and does not limit it to any particular tertiary forms. Thus, this term includes double-stranded DNA found, inter alia, in linear or circular DNA molecules (e.g., restriction fragments), plasmids, and chromosomes. In discussing the structure of particular double-stranded DNA molecules, sequences are described herein according to the normal convention of giving only the sequence in the 5′ to 3′ direction along the non-transcribed strand of DNA (i.e., the strand having a sequence homologous to the mRNA).

A “gene” refers to an assembly of nucleotides that encode a polypeptide, and includes cDNA and genomic DNA nucleic acids. “Gene” also refers to a nucleic acid fragment that expresses a specific protein, including intervening sequences (introns) between individual coding segments (exons), as well as regulatory sequences preceding (5′ non-coding sequences) and following (3′ non-coding sequences) the coding sequence. “Native gene” refers to a gene as found in nature with its own regulatory sequences. The terms “gene(s)” or “polynucleotide” or “nucleic acid” or “polynucleotide sequence(s)” are intended to include nucleic acid molecules, e.g., polynucleotides which include an open reading frame encoding a polypeptide, and can further include non-coding regulatory sequences, and introns. In addition, the terms are intended to include one or more genes that map to a functional locus. Also, the terms are intended to include a specific gene for a selected purpose. The gene can be endogenous to the host cell or can be recombinantly introduced into the host cell, e.g., as a plasmid maintained episomally or a plasmid (or fragment thereof) that is stably integrated into the genome. In addition to the plasmid form, a gene can, for example, be in the form of linear DNA or RNA. The term “gene” is also intended to cover multiple copies of a particular gene, e.g., all of the DNA sequences in a cell encoding a particular gene product.

A nucleic acid molecule is “hybridizable” to another nucleic acid molecule, such as a cDNA, genomic DNA, or RNA, when a single stranded form of the nucleic acid molecule can anneal to the other nucleic acid molecule under the appropriate conditions of temperature and solution ionic strength. Hybridization and washing conditions are well known and exemplified, e.g., in Sambrook, J., Fritsch, E. F. and Maniatis, T. MOLECULAR CLONING: A LABORATORY MANUAL, Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor (1989), particularly Chapter 11 and Table 11.1 therein (hereinafter “Maniatis”, entirely incorporated herein by reference). The conditions of temperature and ionic strength determine the “stringency” of the hybridization. Stringency conditions can be adjusted to screen for moderately similar fragments, such as homologous sequences from distantly related organisms, to highly similar fragments, such as genes that duplicate functional enzymes from closely related organisms. Post-hybridization washes determine stringency conditions. One set of conditions uses a series of washes starting with 6×SSC, 0.5% SDS at room temperature for 15 min, then repeated with 2×SSC, 0.5% SDS at 45° C. for 30 min, and then repeated twice with 0.2×SSC, 0.5% SDS at 50° C. for 30 min. For more stringent conditions, washes are performed at higher temperatures in which the washes are identical to those above except for the temperature of the final two 30 min washes in 0.2×SSC, 0.5% SDS are increased to 60° C. Another set of highly stringent conditions uses two final washes in 0.1×SSC, 0.1% SDS at 65° C. An additional set of highly stringent conditions are defined by hybridization at 0.1×SSC, 0.1% SDS, 65° C. and washed with 2×SSC, 0.1% SDS followed by 0.1×SSC, 0.1% SDS.

Hybridization requires that the two nucleic acids contain complementary sequences, although depending on the stringency of the hybridization, mismatches between bases are possible. The appropriate stringency for hybridizing nucleic acids depends on the length of the nucleic acids and the degree of complementation, variables well known in the art. The greater the degree of similarity or homology between two nucleotide sequences, the greater the value of Tm for hybrids of nucleic acids having those sequences. The relative stability (corresponding to higher Tm) of nucleic acid hybridizations decreases in the following order: RNA:RNA, DNA:RNA, DNA:DNA. For hybrids of greater than 100 nucleotides in length, equations for calculating Tm have been derived (see, e.g., Maniatis at 9.50-9.51). For hybridizations with shorter nucleic acids, i.e., oligonucleotides, the position of mismatches becomes more important, and the length of the oligonucleotide determines its specificity (see, e.g., Maniatis, at 11.7-11.8). In one embodiment the length for a hybridizable nucleic acid is at least about 10 nucleotides. Preferably a minimum length for a hybridizable nucleic acid is at least about 15 nucleotides; more preferably at least about 20 nucleotides; and most preferably the length is at least 30 nucleotides. Furthermore, the skilled artisan will recognize that the temperature and wash solution salt concentration can be adjusted as necessary according to factors such as length of the probe.

The term “percent identity”, as known in the art, is a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, as determined by comparing the sequences. In the art, “identity” also means the degree of sequence relatedness between polypeptide or polynucleotide sequences, as the case can be, as determined by the match between strings of such sequences.

As known in the art, “similarity” between two polypeptides is determined by comparing the amino acid sequence and conserved amino acid substitutes thereto of the polypeptide to the sequence of a second polypeptide.

“Identity” and “similarity” can be readily calculated by known methods, including but not limited to those described in: Computational Molecular Biology (Lesk, A. M., ed.) Oxford University Press, NY (1988); Biocomputing: Informatics and Genome Projects (Smith, D. W., ed.) Academic Press, NY (1993); Computer Analysis of Sequence Data, Part I (Griffin, A. M., and Griffin, H. G., eds.) Humana Press, NJ (1994); Sequence Analysis in Molecular Biology (von Heinje, G., ed.) Academic Press (1987); and Sequence Analysis Primer (Gribskov, M. and Devereux, J., eds.) Stockton Press, NY (1991). Preferred methods to determine identity are designed to give the best match between the sequences tested. Methods to determine identity and similarity are codified in publicly available computer programs. Sequence alignments and percent identity calculations can be performed using the Megalign program of the LASERGENE bioinformatics computing suite (DNASTAR Inc., Madison, Wis.). Multiple alignments of the sequences disclosed herein were performed using the Clustal method of alignment (Higgins and Sharp (1989) CABIOS. 5:151-153) with the default parameters (GAP PENALTY=10, GAP LENGTH PENALTY=10). Default parameters for pairwise alignments using the Clustal method were KTUPLE 1, GAP PENALTY=3, WINDOW=5 and DIAGONALS SAVED=5.

Suitable nucleic acid sequences or fragments thereof (isolated polynucleotides of the present invention) encode polypeptides that are at least about 70% to 75% identical to the amino acid sequences reported herein, at least about 80%, 85%, or 90% identical to the amino acid sequences reported herein, or at least about 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequences reported herein. Suitable nucleic acid fragments are at least about 70%, 75%, or 80% identical to the nucleic acid sequences reported herein, at least about 80%, 85%, or 90% identical to the nucleic acid sequences reported herein, or at least about 95%, 96%, 97%, 98%, 99%, or 100% identical to the nucleic acid sequences reported herein. Suitable nucleic acid fragments not only have the above identities/similarities but typically encode a polypeptide having at least 50 amino acids, at least 100 amino acids, at least 150 amino acids, at least 200 amino acids, or at least 250 amino acids.

A DNA or RNA “coding region” is a DNA or RNA molecule which is transcribed and/or translated into a polypeptide in a cell in vitro or in vivo when placed under the control of appropriate regulatory sequences. “Suitable regulatory regions” refer to nucleic acid regions located upstream (5′ non-coding sequences), within, or downstream (3′ non-coding sequences) of a coding region, and which influence the transcription, RNA processing or stability, or translation of the associated coding region. Regulatory regions include promoters, translation leader sequences, RNA processing site, effector binding site and stem-loop structure. The boundaries of the coding region are determined by a start codon at the 5′ (amino) terminus and a translation stop codon at the 3′ (carboxyl) terminus. A coding region can include, but is not limited to, prokaryotic regions, cDNA from mRNA, genomic DNA molecules, synthetic DNA molecules, or RNA molecules. If the coding region is intended for expression in a eukaryotic cell, a polyadenylation signal and transcription termination sequence will usually be located 3′ to the coding region.

An “isoform” is a protein that has the same function as another protein but which is encoded by a different gene and can have small differences in its sequence.

A “paralogue” is a protein encoded by a gene related by duplication within a genome.

An “orthologue” is gene from a different species that has evolved from a common ancestral gene by speciation. Normally, orthologues retain the same function in the course of evolution as the ancestral gene.

“Open reading frame” is abbreviated ORF and means a length of nucleic acid, either DNA, cDNA or RNA, that comprises a translation start signal or initiation codon, such as an ATG or AUG, and a termination codon and can be potentially translated into a polypeptide sequence.

“Promoter” refers to a DNA fragment capable of controlling the expression of a coding sequence or functional RNA. In general, a coding region is located 3′ to a promoter. Promoters can be derived in their entirety from a native gene, or be composed of different elements derived from different promoters found in nature, or even comprise synthetic DNA segments. It is understood by those skilled in the art that different promoters can direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental or physiological conditions. Promoters which cause a gene to be expressed in most cell types at most times are commonly referred to as “constitutive promoters”. It is further recognized that since in most cases the exact boundaries of regulatory sequences have not been completely defined, DNA fragments of different lengths can have identical promoter activity. A promoter is generally bounded at its 3′ terminus by the transcription initiation site and extends upstream (5′ direction) to include the minimum number of bases or elements necessary to initiate transcription at levels detectable above background. Within the promoter will be found a transcription initiation site (conveniently defined for example, by mapping with nuclease S1), as well as protein binding domains (consensus sequences) responsible for the binding of RNA polymerase.

A coding region is “under the control” of transcriptional and translational control elements in a cell when RNA polymerase transcribes the coding region into mRNA, which is then trans-RNA spliced (if the coding region contains introns) and translated into the protein encoded by the coding region.

“Transcriptional and translational control regions” are DNA regulatory regions, such as promoters, enhancers, terminators, and the like, that provide for the expression of a coding region in a host cell. In eukaryotic cells, polyadenylation signals are control regions.

The term “operably associated” refers to the association of nucleic acid sequences on a single nucleic acid fragment so that the function of one is affected by the other. For example, a promoter is operably associated with a coding region when it is capable of affecting the expression of that coding region (i.e., that the coding region is under the transcriptional control of the promoter). Coding regions can be operably associated to regulatory regions in sense or antisense orientation.

The term “expression,” as used herein, refers to the transcription and stable accumulation of sense (mRNA) or antisense RNA derived from the nucleic acid fragment of the invention. Expression can also refer to translation of mRNA into a polypeptide.

The term “yield” is defined as the amount of product obtained per unit weight of raw material and can be expressed as gram product per gram substrate (g/g). Yield can also be expressed as a percentage of the theoretical yield. “Theoretical yield” is defined as the maximum amount of product that can be generated (e.g., ethanol or monomer sugar) per a given amount of substrate, as dictated by the stoichiometry of the metabolic pathway used to make the product (e.g., hydrolysis and fermentation of oligomers). The theoretical yield for one typical conversion of glucose to ethanol is 0.51 g EtOH per 1 g glucose. As such, a yield of 4.8 g ethanol from 10 g of glucose can be expressed as 94% of theoretical or 94% theoretical yield. The terms “theoretical hydrolysis” and “theoretical hydrolysis yield” are used interchangeably and defined as the fraction of an observed amount of monomer sugar actually released by hydrolysis of an oligomer sugar compared to the maximum amount of monomer sugar that could be released by hydrolysis of an oligomer sugar.

The term “lignocellulose” refers to material that is comprised of lignin and cellulose. Examples of lignocelluloses are provided herein and are known in the art.

A “cellulolytic enzyme” can be any enzyme involved in cellulose digestion, metabolism and/or hydrolysis. The term “cellulase” refers to a class of enzymes produced chiefly by fungi, bacteria, and protozoans that catalyze cellulolysis (i.e., the hydrolysis) of cellulose. However, there are also cellulases produced by other types of organisms such as plants and animals. Several different kinds of cellulases are known, which differ structurally and mechanistically. There are general types of cellulases based on the type of reaction catalyzed: endocellulase breaks internal bonds to disrupt the crystalline structure of cellulose and expose individual cellulose polysaccharide chains; exocellulase cleaves 2-4 units from the ends of the exposed chains produced by endocellulase, resulting in the tetrasaccharides or disaccharide such as cellobiose. There are two main types of exocellulases (or cellobiohydrolases, abbreviated CBH)—one type working processively from the reducing end, and one type working processively from the non-reducing end of cellulose; cellobiase or beta-glucosidase hydrolyses the exocellulase product into individual monosaccharides; oxidative cellulases that depolymerize cellulose by radical reactions, as for instance cellobiose dehydrogenase (acceptor); cellulose phosphorylases that depolymerize cellulose using phosphates instead of water. In the most familiar case of cellulase activity, the enzyme complex breaks down cellulose to beta-glucose. A “cellulase” can be any enzyme involved in cellulose digestion, metabolism and/or hydrolysis, including an endoglucanase, glucosidase, cellobiohydrolase, xylanase, glucanase, xylosidase, xylan esterase, arabinofuranosidase, galactosidase, cellobiose phosphorylase, cellodextrin phosphorylase, mannanase, mannosidase, xyloglucanase, endoxylanase, glucuronidase, acetylxylanesterase, acetyl esterase, arabinofuranohydrolase, swollenin, glucuronyl esterase, expansin, pectinase, and feruoyl esterase protein.

The term “xylanolytic activity” is intended to include the ability to hydrolyze glycosidic linkages in oligopentoses and polypentoses. The term “xylanase” is the name given to a class of enzymes which degrade the linear polysaccharide beta-1,4-xylan into xylose, thus breaking down hemicellulose, one of the major components of plant cell walls. As such, it plays a major role in micro-organisms thriving on plant sources (mammals, conversely, do not produce xylanase). Additionally, xylanases are present in fungi for the degradation of plant matter into usable nutrients. Xylanases include those enzymes that correspond to Enzyme Commission Number 3.2.1.8. A “xylose metabolizing enzyme” can be any enzyme involved in xylose digestion, metabolism and/or hydrolysis, including a xylose isomerase, xylulokinase, xylose reductase, xylose dehydrogenase, xylitol dehydrogenase, xylonate dehydratase, xylose transketolase, and a xylose transaldolase protein.

The term “xylosidase” is the name given to a class of enzymes which hydrolyze O-glycosyl bonds. Xylosidases include, for example, those enzymes that correspond to Enzyme Commission Number 3.2.1.37.

The term “xylanase” is the name given to a class of enzymes which break down beta-1,4-xylan to form xylose. Xylanases include, for example, those enzymes that correspond to Enzyme Commission Number 3.2.1.8. Xylanases include, for example, “β-xylanase”.

The terms “acetylxylanesterase” or “AXE” are the names given to a class of enzymes which catalyze the deacetylation of xylans and xylo-oligosaccharides. Acetylxylanesterases include, for example, those enzymes that correspond to Enzyme Commission Number 3.2.1.72.

The terms “acetyl esterase” or “AE” are the names given to a class of enzymes which catalyze the formation of an alcohol and acetate from an acetic ester. Acetyl esterases include, for example, those enzymes that correspond to Enzyme Commission Number 3.1.1.6.

The term “galactosidase” is the name given to a class of enzymes which catalyze the hydrolysis and cleavage of terminal galactose residues. Galactosidases include “β-galactosidase” which catalyzes the hydrolysis of β-galactosides to form monosaccharides and “α-galactosidase” which catalyzes the hydrolysis of alpha-galactosides to form monosaccharides, such as those found in biomass. Galactosidases include, for example, those enzymes that correspond to Enzyme Commission Numbers 3.2.1.22 and 3.2.1.23.

The term “glucuronidase” is the name given to a class of enzymes which catalyze the hydrolysis of glucuronides. Glucuronidases include, for example, those enzymes that correspond to Enzyme Commission Numbers 3.2.1.131 and 3.2.1.139. Glucuronidases include, for example, “alpha-glucuronidase” or “α-glucuronidase” which catalyzes the hydrolysis of alpha-D-glucuronoside to form alcohol and D-glucuronate.

The terms “Beta-glucosidase” or “β-glucosidase” are the names given to a class of enzymes which catalyze the hydrolysis of the terminal non-reducing residues in beta-D-glucosides. Beta-glucosidases include, for example, those enzymes that correspond to Enzyme Commission Number 3.2.1.21.

The term “endoglucanase” is the name given to a class of enzymes which cut at random in the cellulose polysaccharide chain of amorphous cellulose, generating oligosaccharides of varying lengths and consequently new chain ends. Endoglucanases include, for example, those enzymes that correspond to Enzyme Commission Number 3.2.1.4.

The terms “mannosidase” and “mannanase” are the names given to a class of enzymes which catalyze the hydrolysis of mannan to mannose. These include, for example, those enzymes that correspond to Enzyme Commission Numbers 3.2.1.78 and 3.2.1.25. Mannosidases include, for example, “alpha-mannosidase” and “beta-mannosidase”. The term “pectinase” is a general term for enzymes, such as pectolyase, pectozyme, and polygalacturonase, commonly referred to in brewing as pectic enzymes. These enzymes break down pectin, a polysaccharide substrate that is found in the cell walls of plants. One of the most studied and widely used commercial pectinases is polygalacturonase. Pectinases are commonly used in processes involving the degradation of plant materials, such as speeding up the extraction of fruit juice from fruit, including apples and sapota. Pectinases have also been used in wine production since the 1960s.

A “saccharolytic enzyme” can be any enzyme involved in carbohydrate digestion, metabolism and/or hydrolysis, including amylases, cellulases, hemicellulases, cellulolytic, and amylolytic accessory enzymes, inulinases, levanases, and pentose sugar utilizing enzymes.

A “pentose sugar utilizing enzyme” can be any enzyme involved in pentose sugar digestion, metabolism and/or hydrolysis, including xylanase, arabinase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinoxylanase, arabinosidase, and arabinofuranosidase, arabinose isomerase, ribulose-5-phosphate 4-epimerase, xylose isomerase, xylulokinase, xylose reductase, xylose dehydrogenase, xylitol dehydrogenase, xylonate dehydratase, xylose transketolase, and/or xylose transaldolase.

As used herein, the term “anaerobic” refers to an organism, biochemical reaction, or process that is active or occurs under conditions of an absence of gaseous O2.

“Anaerobic conditions” are defined as conditions under which the oxygen concentration in the fermentation medium is too low for the microorganism to use it as a terminal electron acceptor. Anaerobic conditions can be achieved by sparging a fermentation medium with an inert gas such as nitrogen until oxygen is no longer available to the microorganism as a terminal electron acceptor. Alternatively, anaerobic conditions can be achieved by the microorganism consuming the available oxygen of fermentation until oxygen is unavailable to the microorganism as a terminal electron acceptor.

“Aerobic metabolism” refers to a biochemical process in which oxygen is used as a terminal electron acceptor to convert energy, typically in the form of ATP, from carbohydrates. Aerobic metabolism typically occurs, for example, via the electron transport chain in mitochondria in eukaryotes, wherein a single glucose molecule is metabolized completely into carbon dioxide in the presence of oxygen.

In contrast, “anaerobic metabolism” refers to a biochemical process in which oxygen is not the final acceptor of electrons generated. Anaerobic metabolism can be divided into anaerobic respiration, in which compounds other than oxygen serve as the terminal electron acceptor, and substrate level phosphorylation, in which no exogenous electron acceptor is used and products of an intermediate oxidation state are generated via a “fermentative pathway.”

In “fermentative pathways”, the amount of NAD(P)H generated by glycolysis is balanced by the consumption of the same amount of NAD(P)H in subsequent steps. For example, in one of the fermentative pathways of certain yeast strains, NAD(P)H generated through glycolysis donates its electrons to acetaldehyde, yielding ethanol. Fermentative pathways are usually active under anaerobic conditions but can also occur under aerobic conditions, under conditions where NADH is not fully oxidized via the respiratory chain.

As used herein, the term “end-product” refers to a chemical compound that is not or cannot be used by a cell, and so is excreted or allowed to diffuse into the extracellular environment. Common examples of end-products from anaerobic fermentation include, but are not limited to, ethanol, acetic acid, formic acid, lactic acid, hydrogen, and carbon dioxide.

As used herein, “cofactors” are compounds involved in biochemical reactions that are recycled within the cells and remain at approximately steady state levels. Common examples of cofactors involved in anaerobic fermentation include, but are not limited to, NAD+ and NADP+. In metabolism, a cofactor can act in oxidation-reduction reactions to accept or donate electrons. When organic compounds are broken down by oxidation in metabolism, their energy can be transferred to NAD+ by its reduction to NADH, to NADP+ by its reduction to NADPH, or to another cofactor, FAD+, by its reduction to FADH2. The reduced cofactors can then be used as a substrate for a reductase.

As used herein, a “pathway” is a group of biochemical reactions that together can convert one compound into another compound in a step-wise process. A product of the first step in a pathway can be a substrate for the second step, and a product of the second step can be a substrate for the third, and so on. Pathways of the present invention include, but are not limited to, the pyruvate metabolism pathway, the lactate production pathway, the ethanol production pathway, and the glycerol production pathway.

The term “recombination” or “recombinant” refers to the physical exchange of DNA between two identical (homologous), or nearly identical, DNA molecules. Recombination can be used for targeted gene deletion or to modify the sequence of a gene. The terms “recombinant microorganism” and “recombinant host cell” are used interchangeably herein and refer to microorganisms that have been genetically modified to express or over-express endogenous polynucleotides, or to express heterologous polynucleotides, such as those included in a vector, or which have a modification in expression of an endogenous gene.

By “expression modification” it is meant that the expression of the gene, or level of a RNA molecule or equivalent RNA molecules encoding one or more polypeptides or polypeptide subunits, or activity of one or more polypeptides or polypeptide subunits is up regulated or down-regulated, such that expression, level, or activity, is greater than or less than that observed in the absence of the modification.

In one aspect of the invention, genes or particular polynucleotide sequences are partially, substantially, or completely deleted, silenced, inactivated, or down-regulated in order to inactivate the enzymatic activity they encode. Complete deletions provide maximum stability because there is no opportunity for a reverse mutation to restore function. Alternatively, genes can be partially, substantially, or completely deleted, silenced, inactivated, or down-regulated by insertion, deletion, removal, or substitution of nucleic acid sequences that disrupt the function and/or expression of the gene.

Host Cells Expressing Heterologous Saccharolytic Enzymes

In order to address the limitations of the previous systems, in one aspect, the present invention provides host cells expressing heterologous cellulases that can be effectively and efficiently utilized to produce products such as ethanol from cellulose. In some embodiments, the host cells express heterologous enzymes that utilize pentose sugars.

In some embodiments, the host cell can be a yeast. According to the present invention the yeast host cell can be, for example, from the genera Saccharomyces, Kluyveromyces, Candida, Pichia, Schizosaccharomyces, Hansenula, Kloeckera, Schwanniomyces, or Yarrowia. Yeast species of host cells can include, for example, S. cerevisiae, S. bulderi, S. barnetti, S. exiguus, S. uvarum, S. diastaticus, K. lactis, K. marxianus, or K. fragilis. In some embodiments, the yeast is selected from Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans, Pichia pastoris, Pichia stipitis, Yarrowia lipolytica, Hansenula polymorpha, Phaffia rhodozyma, Candida utilis, Arxula adeninivorans, Debaryomyces hansenii, Debaryomyces polymorphus, Schizosaccharomyces pombe or Schwanniomyces occidentalis. In some embodiments, the yeast is Saccharomyces cerevisiae. The selection of an appropriate host is deemed to be within the scope of those skilled in the art from the teachings herein.

In some embodiments of the present invention, the host cell is an oleaginous cell. According to the present invention, the oleaginous host cell can be an oleaginous yeast cell. For example, the oleaginous yeast host cell can be from the genera Blakeslea, Candida, Cryptococcus, Cunninghamella, Lipomyces, Mortierella, Mucor, Phycomyces, Pythium, Rhodosporidum, Rhodotorula, Trichosporon, or Yarrowia. In some embodiments, the oleaginous host cell can be an oleaginous microalgae host cell. For example, the oleaginous microalgae host cell can be from the genera Thraustochytrium or Schizochytrium.

In some embodiments of the present invention, the host cell is a thermotolerant host cell. Thermotolerant host cells are useful in simultaneous saccharification and fermentation processes by allowing externally produced cellulases and ethanol-producing host cells to perform optimally in similar temperature ranges. Thermotolerant host cells of the invention can include, for example, Issatchenkia orientalis, Pichia mississippiensis, Pichia mexicana, Pichia farinosa, Clavispora opuntiae, Clavispora lusitaniae, Candida mexicana, Hansenula polymorpha and Kluyveromyces host cells.

In some embodiments of the present invention, the host cell is a Kluyveromyces host cell. For example, the Kluyveromyces host cell can be a K. lactis, K. marxianus, K. blattae, K. phaffii, K. yarrowii, K. aestuarii, K. dobzhanskii, K. wickerhamii, K. thermotolerans, or K. waltii host cell. In some embodiments, the host cell is a K. lactis or K. marxianus host cell. In other embodiments, the host cell is a K. marxianus host cell.

In some embodiments of the present invention, the thermotolerant host cell can grow at temperatures above about 30° C., about 31° C., about 32° C., about 33° C., about 34° C., about 35° C., about 36° C., about 37° C., about 38° C., about 39° C., about 40° C., about 41° C., about 42° C., or any range of values thereof. In some embodiments of the present invention, the thermotolerant host cell can produce ethanol from cellulose at temperatures above about 30° C., about 31° C., about 32° C., about 33° C., about 34° C., about 35° C., about 36° C., about 37° C., about 38° C., about 39° C., about 40° C., about 41° C., about 42° C., about 50° C., or any range of values thereof.

In some embodiments of the present invention, the thermotolerant host cell can grow at temperatures from, for example, about 30° C. to about 60° C., about 30° C. to about 55° C., about 30° C. to about 50° C., about 40° C. to about 60° C., about 40° C. to about 55° C., or about 40° C. to about 50° C. In some embodiments of the present invention, the thermotolerant host cell can produce ethanol from cellulose at temperatures from about 30° C. to about 60° C., about 30° C. to about 55° C., about 30° C. to about 50° C., about 40° C. to about 60° C., about 40° C. to about 55° C., or about 40° C. to about 50° C.

Host cells of the invention are genetically engineered (e.g., transduced, transformed, or transfected) with the polynucleotides encoding saccharolytic enzymes (e.g., amylases, cellulases, hemicellulases, cellulolytic and amylolytic accessory enzymes, inulinases, levanases, pentose sugar hydrolases, acetylxylanesterases, xylanases, xylosidases, galactosidases, mannosidases, mannanases, alpha-glucuronidases, endoglucanases, beta-glucosidases, acetyl esterases, and others) of this invention which are described in more detail herein. The polynucleotides encoding saccharolytic enzymes can be introduced to the host cell on a vector of the invention, which can be, for example, a cloning vector or an expression vector comprising a sequence encoding a heterologous saccharolytic enzyme. The host cells can comprise polynucleotides of the invention as integrated copies or plasmid copies.

In certain aspects, the present invention relates to host cells containing the polynucleotide constructs described herein. In some embodiments, the host cells of the present invention express one or more heterologous polypeptides of saccharolytic enzymes. In some embodiments, the host cell comprises a combination of polynucleotides that encode heterologous saccharolytic enzymes or fragments, variants, or derivatives thereof. The host cell can, for example, comprise multiple copies of the same nucleic acid sequence, for example, to increase expression levels, or the host cell can comprise a combination of unique polynucleotides. In other embodiments, the host cell comprises a single polynucleotide that encodes a heterologous saccharolytic enzyme or a fragment, variant, or derivative thereof. In particular, such host cells expressing a single heterologous saccharolytic enzyme can be used in co-culture with other host cells of the invention comprising a polynucleotide that encodes at least one other heterologous saccharolytic enzyme or fragment, variant, or derivative thereof.

In some embodiments, the host cell expresses at least one, at least two, at least three, at least four, at least five, at leave six, at least seven, at least eight, at least nine, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 saccharolytic enzymes. In some embodiments, the host cell expresses an acetylxylanesterase. In some embodiments, the acetylxylanesterase is selected from SEQ ID NOs:6-10. In some embodiments, the host cell expresses a xylanase. In some embodiments, the xylanase is selected from SEQ ID NOs:37-62. In some embodiments, the host cell expresses a xylosidase. In some embodiments, the xylosidase is selected from SEQ ID NOs:78-92. In some embodiments, the host cell expresses a galactosidase. In some embodiments, the galactosidase is selected from SEQ ID NOs:108-122. In some embodiments, the host cell expresses a mannosidase. In some embodiments, the mannosidase is selected from SEQ ID NOs:146-168. In some embodiments, the host cell expresses an alpha-glucuronidase. In some embodiments, the alpha-glucuronidase is selected from SEQ ID NOs:184-198. In some embodiments, the host cell comprises one or more saccharolytic enzymes selected from SEQ ID NOs:8, 37, 78, 108, 140, 141, 146, 147, 184, 224, 228, 289, and 346. In some embodiments, the host cell comprises one or more saccharolytic enzymes selected from SEQ ID NOs:8, 37, 78, 108, 140, 141, 146, 147, 184, 224, 228, 289, and 346.

Introduction of a polynucleotide encoding a heterologous saccharolytic enzyme into a host cell can be done by methods known in the art. Introduction of polynucleotides encoding a heterologous saccharolytic enzyme into, for example, yeast host cells, can be effected by lithium acetate transformation, spheroplast transformation, or transformation by electroporation, as described in Current Protocols in Molecular Biology, 13.7.1-13.7.10. Introduction of the construct can also be effected by calcium phosphate transfection, DEAE-Dextran mediated transfection, or electroporation. (Davis, L., et al., Basic Methods in Molecular Biology, (1986)).

Transformed host cells or cultures of the invention can be examined for protein content of an endoglucanase, glucosidase, cellobiohydrolase, xylanase, glucanase, xylosidase, xylan esterase, arabinofuranosidase, galactosidase, cellobiose phosphorylase, cellodextrin phosphorylase, mannanase, mannosidase, xyloglucanase, endoxylanase, glucuronidase, acetylxylanesterase, arabinofuranohydrolase, swollenin, glucuronyl esterase, expansin, pectinase, feruoyl esterase protein, alpha-amylase, beta-amylase, glucoamylase, pullulanase, isopullulanase, alpha-glucosidase, beta-glucosidase, arabinase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinose isomerase, ribulose-5-phosphate 4-epimerase, xylose isomerase, xylulokinase, xylose reductase, xylose dehydrogenase, xylitol dehydrogenase, xylonate dehydratase, xylose transketolase, and/or xylose transaldolase. For the use of secreted heterologous saccharolytic enzymes, protein content can be determined by analyzing the host (e.g., yeast) cell supernatants. In some embodiments, high molecular weight material can be recovered from the yeast cell supernatant either by acetone precipitation or by buffering the samples with disposable de-salting cartridges. Proteins, including tethered heterologous saccharolytic enzymes, can also be recovered and purified from recombinant host cell or cultures of the invention by spheroplast preparation and lysis, cell disruption using glass beads, or cell disruption using liquid nitrogen, for example. Additional protein purification methods include, for example, ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography, gel filtration, and lectin chromatography. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.

Protein analysis methods include, for example, methods such as the traditional Lowry method, the BCA assay, absorbance at 280 nm, or the protein assay method according to BioRad's manufacturer's protocol. Using such methods, the protein content of saccharolytic enzymes can be estimated. Additionally, to accurately measure protein concentration, a heterologous cellulase can be expressed with a tag, for example a histidine (His)-tag or hemagglutinin (HA)-tag and purified by standard methods using, for example, antibodies against the tag, a standard nickel resin purification technique, or similar approach.

Transformed host cells or cell cultures of the invention, as described above, can be further analyzed for hydrolysis of cellulose, or starch, or pentose sugar utilization (e.g., by a sugar detection assay), for a particular type of saccharolytic enzyme activity (e.g., by measuring the individual endoglucanase, glucosidase, cellobiohydrolase, xylanase, glucanase, xylosidase, xylan esterase, arabinofuranosidase, galactosidase, cellobiose phosphorylase, cellodextrin phosphorylase, mannanase, mannosidase, xyloglucanase, endoxylanase, glucuronidase, acetylxylanesterase, arabinofuranohydrolase, swollenin, glucuronyl esterase, expansin, pectinase, feruoyl esterase, alpha-amylase, beta-amylase, glucoamylase, pullulanase, isopullulanase, alpha-glucosidase, beta-glucosidase, galactosidase, arabinase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinoxylanase, arabinosidase, and arabinofuranosidase, arabinose isomerase, ribulose-5-phosphate 4-epimerase, xylose isomerase, xylulokinase, xylose reductase, xylose dehydrogenase, xylitol dehydrogenase, xylonate dehydratase, xylose transketolase, and/or xylose transaldolase) or for total cellulase activity. Endoglucanase activity can be determined, for example, by measuring an increase of reducing ends in an endoglucanase specific CMC or hydroxyethylcellulose (HEC) substrate. Cellobiohydrolase activity can be measured, for example, by using insoluble cellulosic substrates such as the amorphous substrate phosphoric acid swollen cellulose (PASC) or microcrystalline cellulose (Avicel) and determining the extent of the substrate's hydrolysis. β-glucosidase activity can be measured by a variety of assays, e.g., using cellobiose. Assays for activity of other saccharolytic enzyme types are known in the art and are exemplified below.

A total saccharolytic enzyme activity, which can include the activity of endoglucanase, glucosidase, cellobiohydrolase, xylanase, glucanase, xylosidase, xylan esterase, arabinofuranosidase, galactosidase, cellobiose phosphorylase, cellodextrin phosphorylase, mannanase, mannosidase, xyloglucanase, endoxylanase, glucuronidase, acetylxylanesterase, arabinofuranohydrolase, swollenin, glucuronyl esterase, expansin, pectinase, feruoyl esterase protein, alpha-amylase, beta-amylase, glucoamylase, alpha-glucosidase, beta-glucosidase, galactosidase, arabinase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinoxylanase, arabinosidase, pullulanase, isopullulanase, arabinose isomerase, ribulose-5-phosphate 4-epimerase, xylose isomerase, xylulokinase, xylose reductase, xylose dehydrogenase, xylitol dehydrogenase, xylonate dehydratase, xylose transketolase, and xylose transaldolase can hydrolyze biomass feedstocks synergistically. For example, total cellulase activity can thus be measured using insoluble substrates including pure cellulosic substrates such as Whatman No. 1 filter paper, cotton linter, microcrystalline cellulose, bacterial cellulose, algal cellulose, and cellulose-containing substrates such as dyed cellulose, alpha-cellulose, or pretreated lignocellulose. Specific activity of cellulases can also be detected by methods known to one of ordinary skill in the art, such as by the Avicel assay (described supra) that would be normalized by protein (cellulase) concentration measured for the sample. Total saccharolytic activity could be also measured using complex substrate containing starch, cellulose and hemicellulose, such as corn mash by measuring released monomeric sugars. In such an assay, different groups of enzymes could work in “indirect” when one group of enzymes such as cellulases can make substrate for another group of enzymes such as amylases more accessible through hydrolysis of cellulolytic substrate around amylolytic substrate. This mechanism can also work vice versa.

One aspect of the invention is thus related to the efficient production of saccharolytic enzymes to aid in the digestion and utilization of starch, cellulose, and pentose sugars, and generation of products such as ethanol. A “saccharolytic enzyme” can be any enzyme involved in carbohydrate digestion, metabolism and/or hydrolysis, including amylases, cellulases, hemicellulases, cellulolytic, and amylolytic accessory enzymes, inulinases, levanases, and pentose sugar hydrolyzing enzymes. A “cellulase” can be any enzyme involved in cellulase digestion, metabolism and/or hydrolysis, including, for example, an endoglucanase, glucosidase, cellobiohydrolase, xylanase, glucanase, xylosidase, xylan esterase, arabinofuranosidase, galactosidase, cellobiose phosphorylase, cellodextrin phosphorylase, mannanase, mannosidase, xyloglucanase, endoxylanase, glucuronidase, acetylxylanesterase, arabinofuranohydrolase, swollenin, glucuronyl esterase, expansin, pectinase, and feruoyl esterase protein. An “amylase” can be any enzyme involved in amylase digestion and/or metabolism, including alpha-amylase, beta-amylase, glucoamylase, pullulanase, isopullulanase, and alpha-glucosidase. A pentose sugar hydrolyzing enzyme can be any enzyme involved in pentose sugar digestion, and/or metabolism, including, for example, xylanase, arabinase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinoxylanase, arabinosidase, and arabinofuranosidase, arabinose isomerase, ribulose-5-phosphate 4-epimerase, xylose isomerase, xylulokinase, xylose reductase, xylose dehydrogenase, xylitol dehydrogenase, xylonate dehydratase, xylose transketolase, and/or xylose transaldolase.

In additional embodiments, the transformed host cells or cell cultures can be assayed for ethanol production. Ethanol production can be measured by techniques known to one of ordinary skill in the art, e.g., by a standard HPLC refractive index method.

In some embodiments, the yeast host cell is selected from the following strains M3799, M3059, M3222, M3701, M3702, M3703, M4059, M3318, M2295, M3240, M3460, M4494, M4170, M2963, M4042, M4044, M4638, M4642, M4777, M4782, M4821, M4836, M4888, M5401, M5870, M5754, M5891 or M5453.

Saccharomyces cerevisiae strain M3799, an adapted strain that utilizes xylose and generated by the methods described in Example 1, was deposited with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, Va., 20110 on Aug. 30, 2012, and assigned ATCC Accession No. PTA-13180.

Heterologous Saccharolytic Enzymes

According to one aspect of the present invention, the expression of heterologous saccharolytic enzymes in a host cell can be used advantageously to produce products such as ethanol from biomass sources. For example, cellulases from a variety of sources can be heterologously expressed to successfully increase efficiency of ethanol production. The saccharolytic enzymes can be from fungi, yeast, bacteria, plant, protozoan, or termite sources. In some embodiments, the saccharolytic enzyme is from Aspergillus niger, Trichoderma reesei, Neosartorya fischeri, Chaetomium thermophilum, Chrysosporium lucknowense, Aureobasidium pullulans, Clostridium phytofermentans, Anaerocellum thermophilum, Pyrenophora tritici-repentis, Aspergillus nidulans, Cochliobolus carbonum, Penicillium herquei, Pyrenophora tritici-repentis, Clostridium stercorarium, Talaromyces stipitatus GH31, Metarhizium acridum CQMa 102, Pyrenophora teres f. teres 0-1, Talaromyces emersonii, Aspergillus aculeatus, Saccharophagus degradans 2-40, Anaerocellum thermophilum, Scheffersomyces stipitis, Aspergillus clavatus, Debaryomyces hansenii, Scheffersomyces stipitis, Pyrenophora tritici-repentis, Aspergillus fumigatus, Chaetomium globosum, Arabidopsis thaliana, Hordeum vulgare, Oncidium Gower Ramsey, Zea Mays, Oryza sativa, Aspergillus oryzae, Schizophyllum commune, Neurospora crassa, Fusarium sporotrichioides, Pichia stipitus, Humicola insolens, Podspora anserine, Tetrahymena thermophilum, Polysphondylium pallidum, Dictyostelium fasciculatum, Saccharomycopsis fibuligera, Aspergillus terreus, Trichoderma longibrachiatum, Penicillium marneffei, Thielavia heterothallica, Fusarium oxysporum, Magnaporthe grisea, Fusarium graminearum, Hypocrea jecorina, Chrysosporium lucknowense, Polyporus arcularius, Aspergillus kawachii, Heterodera schachtii, Orpinomyces sp., Irpex lacteus, Penicillium decumbens, Phanerochaete chrysosporium, Stachybotrys echinata, Chaetomium brasiliense, Thielavia terrestris, Streptomyces avermitilis, Saccharophagus degradans 2-40, Bacillus subtilis, Clostridium phytofermentans, Clostridium cellulolyticum, Thermobifida fusca, Clostridium thermocellum, Clostridium stercorarium, Anaerocellum thermophilum, or Thermobifida fusca.

In some embodiments of the invention, multiple saccharolytic enzymes from a single organism are co-expressed in the same host cell. In some embodiments of the invention, multiple saccharolytic enzymes from different organisms are co-expressed in the same host cell. In particular, saccharolytic enzymes from two, three, four, five, six, seven, eight, nine or more organisms can be co-expressed in the same host cell. Similarly, the invention can encompass co-cultures of yeast strains, wherein the yeast strains express different saccharolytic enzymes. Co-cultures can include yeast strains expressing heterologous saccharolytic enzymes from the same organisms or from different organisms. Co-cultures can include yeast strains expressing saccharolytic enzymes from two, three, four, five, six, seven, eight, nine or more organisms.

Lignocellulases of the present invention include both endoglucanases and exoglucanases. Other lignocellulases of the invention include accessory enzymes which can act on the lignocellulosic material. The lignocellulases can be, for example, endoglucanases, glucosidases, cellobiohydrolases, xylanases, glucanases, xylosidases, xylan esterases, arabinofuranosidases, galactosidases, cellobiose phosphorylases, cellodextrin phosphorylases, mannanases, mannosidases, xyloglucanases, endoxylanases, glucuronidases, acetylxylanesterases, arabinofuranohydrolases, swollenins, glucuronyl esterases, expansins, pectinases, and feruoyl esterases. In some embodiments, the lignocellulases of the invention can be any suitable enzyme for digesting the desired lignocellulosic material.

In some embodiments of the invention, the lignocellulase can be an endoglucanase, glucosidase, cellobiohydrolase, xylanase, glucanase, xylosidase, xylan esterase, arabinofuranosidase, galactosidase, cellobiose phosphorylase, cellodextrin phosphorylase, mannanase, mannosidase, xyloglucanase, endoxylanase, glucuronidase, acetylxylanesterase, arabinofuranohydrolase, swollenin, glucuronyl esterase, expansin, pectinase, and feruoyl esterase paralogue or orthologue.

In some embodiments, the saccharolytic enzyme of the invention comprises an amino acid sequence or is encoded by a polynucleotide sequence that is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to a sequence selected from SEQ ID NOs:1-346, or any range of values thereof. In some embodiments, the saccharolytic enzyme is an acetylxylanesterase. In some embodiments, the acetylxylanesterase is selected from SEQ ID NOs:6-10. In some embodiments, the saccharolytic enzyme is a xylanase. In some embodiments, the xylanase is selected from SEQ ID NOs:37-62. In some embodiments, the saccharolytic enzyme is a xylosidase. In some embodiments, the xylosidase is selected from SEQ ID NOs:78-92. In some embodiments, the saccharolytic enzyme is a galactosidase. In some embodiments, the galactosidase is selected from SEQ ID NOs:108-122. In some embodiments, the saccharolytic enzyme is a mannosidase. In some embodiments, the mannosidase is selected from SEQ ID NOs:146-168. In some embodiments, the saccharolytic enzyme is an alpha-glucuronidase. In some embodiments, the alpha-glucuronidase is selected from SEQ ID NOs:184-198. In some embodiments, the saccharolytic enzymes are selected from SEQ ID NOs:8, 37, 78, 108, 140, 141, 146, 147, 184, 224, 228, 289, and 346. In some embodiments, the saccharolytic enzymes are selected from SEQ ID NOs:8, 37, 78, 108, 140, 141, 146, 147, 184, 224, 228, 289, and 346. In some embodiments, the saccharolytic enzyme comprises a tag, such as, for example, a histidine tag.

In some embodiments, the invention is directed to a composition comprising one or more saccharolytic enzymes described herein. In some embodiments, the composition comprises an acetylxylanesterase, xylanase, and xylosidase. In some embodiments, the acetylxylanesterase comprises an amino acid sequence that is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to a sequence selected from SEQ ID NOs:6-10, or any range of values thereof. In some embodiments, the xylanase comprises an amino acid sequence that is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to a sequence selected from SEQ ID NOs:37-62, or any range of values thereof. In some embodiments, the xylosidase comprises an amino acid sequence that is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to a sequence selected from SEQ ID NOs:78-92, or any range of values thereof.

In some embodiments, the composition further comprises a galactosidase. In some embodiments, the galactosidase comprises an amino acid sequence that is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to a sequence selected from SEQ ID NOs:108-122, or any range of values thereof.

In some embodiments, the composition further comprises a mannosidase or mannanase. In some embodiments, the mannosidase or mannanase comprises an amino acid sequence that is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to a sequence selected from SEQ ID NOs:146-168, or any range of values thereof.

In some embodiments, the composition further comprises an alpha-glucuronidase. In some embodiments, the alpha-glucuronidase comprises an amino acid sequence that is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to a sequence selected from SEQ ID NOs:184-198, or any range of values thereof.

In some embodiments, the composition further comprises an acetyl esterase. In some embodiments, the acetyl esterase comprises an amino acid sequence that is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to a sequence selected from SEQ ID NOs:223-225, or any range of values thereof.

In some embodiments, the composition further comprises a glucosidase. In some embodiments, the glucosidase comprises an amino acid sequence that is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to a sequence selected from SEQ ID NOs:226-227, or any range of values thereof.

In some embodiments, the composition further comprises an endoglucanase. In some embodiments, the endoglucanase comprises an amino acid sequence that is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to a sequence selected from SEQ ID NOs:289-345, or any range of values thereof.

In some embodiments, the composition further comprises a glucuronyl esterase. In some embodiments, the glucuronyl esterase comprises an amino acid sequence that is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% identical to the sequence of SEQ ID NO:346, or any range of values thereof.

In some embodiments, the compositions comprising one or more saccharolytic enzymes described herein (e.g., an acetylxylanesterase, xylanase, and xylosidase) contain one or more enzymes recovered and/or purified from a host cell, strain, or culture of the invention. Such enzymes can be recovered, for example, from a cell supernatant either by acetone precipitation or by buffering the samples with disposable de-salting cartridges. Such enzymes can also be purified, for example, from a host cell, strain, or culture by spheroplast preparation and lysis, cell disruption using glass beads, or cell disruption using liquid nitrogen. Additional purification methods include, for example, ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography, gel filtration, and lectin chromatography. Protein refolding steps can also be used, as necessary, in completing configuration of the enzyme protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps. In some embodiments, the compositions comprising one or more saccharolytic enzymes described herein (e.g., an acetylxylanesterase, xylanase, and xylosidase) contain one or more enzymes from a crude extract of a host cell, strain, or culture of the invention.

As a practical matter, whether any polynucleotide or polypeptide is at least 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% identical to a polynucleotide or polypeptide of the present invention can be determined conventionally using known computer programs. Methods for determining percent identity, as discussed in more detail below in relation to polynucleotide identity, are also relevant for evaluating polypeptide sequence identity.

In some particular embodiments of the invention, the saccharolytic enzyme comprises a sequence selected from SEQ ID NOs:1-346. The saccharolytic enzymes of the invention also include saccharolytic enzymes that comprise a sequence at least about 70%, about 80%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, 100% identical to SEQ ID NOs:1-346, or any range of values thereof. Amino acid and nucleic acid sequences are readily determined for a gene, protein, or other element by an accession number upon consulting the proper database, for example, Genebank. However, sequences for the genes and proteins of the present invention are also disclosed herein (SEQ ID NOs:1-346).

Some embodiments of the invention encompass a polynucleotide or polypeptide comprising at least 10, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 200, at least 300, at least 400, at least 500, or any range of values thereof, consecutive nucleotides or amino acids of SEQ ID NOs:1-346, or any domains, fragments, variants, or derivatives thereof.

In some aspects of the invention, the polypeptides and polynucleotides of the present invention are provided in an isolated form, e.g., purified to homogeneity.

The present invention also encompasses polynucleotides or polypeptides which comprise, or alternatively consist of, a polynucleotide or amino acid sequence which is at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or 100% similar to the polynucleotide or polypeptide of any of SEQ ID NOs:1-346, and to portions of such polynucleotide or polypeptide, with such portion of the polypeptide containing, for example, at least 30 amino acids or at least 50 amino acids.

As known in the art “similarity” between two polypeptides or polynucleotides is determined by comparing the polynucleotide or amino acid sequence and conserved substitutes thereto to the sequence of a second polynucleotide or polypeptide.

The present invention further relates to a domain, fragment, variant, derivative, or analog of a polypeptide or polynucleotide of any of SEQ ID NOs:1-346.

Fragments or portions of the polypeptides of the present invention can be employed for producing the corresponding full-length polypeptide by peptide synthesis. Therefore, the fragments can be employed as intermediates for producing the full-length polypeptides.

Fragments of lignocellulases of the invention encompass domains, proteolytic fragments, deletion fragments and in particular, fragments of any of SEQ ID NOs:1-346, which retain any specific biological activity. Fragments further include any portion of a polypeptide which retains a catalytic activity of endoglucanase, glucosidase, cellobiohydrolase, xylanase, glucanase, xylosidase, xylan esterase, arabinofuranosidase, galactosidase, cellobiose phosphorylase, cellodextrin phosphorylase, mannanase, mannosidase, xyloglucanase, endoxylanase, glucuronidase, acetylxylanesterase, arabinofuranohydrolase, swollenin, glucuronyl esterase, expansin, pectinase, or feruoyl esterase protein.

The variant, derivative, or analog of SEQ ID NOs:1-346 can be (i) one in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code, or (ii) one in which one or more of the amino acid residues includes a substituent group, or (iii) one in which the mature polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol), or (iv) one in which the additional amino acids are fused to the mature polypeptide for purification of the polypeptide or (v) one in which a fragment of the polypeptide is soluble, i.e., not membrane bound, yet still binds ligands to the membrane bound receptor. Such variants, derivatives and analogs are deemed to be within the scope of those skilled in the art from the teachings herein.

The polypeptides of the present invention further include variants of the polypeptides. A “variant” of the polypeptide can be a conservative variant, or an allelic variant. As used herein, a conservative variant refers to alterations in the amino acid sequence that do not adversely affect the biological functions of the protein. A substitution, insertion or deletion is said to adversely affect the protein when the altered sequence prevents or disrupts a biological function associated with the protein. For example, the overall charge, structure or hydrophobic-hydrophilic properties of the protein can be altered without adversely affecting a biological activity. Accordingly, the amino acid sequence can be altered, for example to render the peptide more hydrophobic or hydrophilic, without adversely affecting the biological activities of the protein.

By an “allelic variant” is intended alternate forms of a gene occupying a given locus on a chromosome of an organism. Genes II, Lewin, B., ed., John Wiley & Sons, New York (1985). Non-naturally occurring variants can be produced using art-known mutagenesis techniques. Allelic variants, though possessing a slightly different amino acid sequence than those recited above, will still have the same or similar biological functions associated with the endoglucanases, glucosidases, cellobiohydrolases, xylanases, glucanases, xylosidases, xylan esterases, arabinofuranosidases, galactosidases, cellobiose phosphorylases, cellodextrin phosphorylases, mannanases, mannosidases, xyloglucanases, endoxylanases, glucuronidases, acetylxylanesterases, arabinofuranohydrolases, swollenins, glucuronyl esterases, expansins, pectinases, feruoyl esterases, alpha-amylase, beta-amylase, glucoamylase, alpha-glucosidase, beta-glucosidase, galactosidase, arabinase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinoxylanase, arabinosidase, and arabinofuranosidase, arabinose isomerase, ribulose-5-phosphate 4-epimerase, xylose isomerase, xylulokinase, xylose reductase, xylose dehydrogenase, xylitol dehydrogenase, xylonate dehydratase, xylose transketolase, and/or xylose transaldolase of the invention. The allelic variants, the conservative substitution variants, and members of the endoglucanase, cellobiohydrolase, β-glucosidase, alpha-amylase, beta-amylase, glucoamylase, pullulanase, isopullulanase, or alpha-glucosidase protein families, can have an amino acid sequence having at least 75%, at least 80%, at least 90%, at least 95%, or at least 99% amino acid sequence identity with endoglucanases, glucosidases, cellobiohydrolases, xylanases, glucanases, xylosidases, xylan esterases, arabinofuranosidases, galactosidases, cellobiose phosphorylases, cellodextrin phosphorylases, mannanases, mannosidases, xyloglucanases, endoxylanases, glucuronidases, acetylxylanesterases, arabinofuranohydrolases, swollenins, glucuronyl esterases, expansins, pectinases, feruoyl esterase, alpha-amylase, beta-amylase, glucoamylase, pullulanase, isopullulanase, alpha-glucosidase, and beta-glucosidase sequence set forth in any one of SEQ ID NOs:1-346. Identity or homology with respect to such sequences is defined herein as the percentage of polynucleotide or amino acid residues in the candidate sequence that are identical with a known sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent homology, and not considering any conservative substitutions as part of the sequence identity. N-terminal, C-terminal or internal extensions, deletions, or insertions into the sequence shall not be construed as affecting homology.

Thus, in one aspect the present invention includes molecules comprising the sequence of any one or more of SEQ ID NOs:1-346, or fragments thereof having a consecutive sequence of at least about 3, at least about 4, at least about 5, at least about 6, at least about 10, at least about 15, at least about 20, at least about 25, at least about 30, at least about 35 or more nucleotides or amino acid residues of the endoglucanase, glucosidase, cellobiohydrolase, xylanase, glucanase, xylosidase, xylan esterase, arabinofuranosidase, galactosidase, cellobiose phosphorylase, cellodextrin phosphorylase, mannanase, mannosidase, xyloglucanase, endoxylanase, glucuronidase, acetylxylanesterase, arabinofuranohydrolase, swollenin, glucuronyl esterase, expansin, pectinase, feruoyl esterase, alpha-amylase, beta-amylase, glucoamylase, pullulanase, isopullulanase, alpha-glucosidase, or beta-glucosidase sequences. Amino acid sequence variants of such sequences wherein at least one amino acid residue has been inserted N- or C-terminal to, or within, the disclosed sequence; amino acid sequence variants of the disclosed sequences, or their fragments as defined above, that have been substituted by another residue. Contemplated variants further include those containing predetermined mutations by, e.g., homologous recombination, site-directed or PCR mutagenesis, and the corresponding proteins of other animal species, including but not limited to bacterial, fungal, insect, rabbit, rat, porcine, bovine, ovine, equine and non-human primate species, the alleles or other naturally occurring variants of the family of proteins; and derivatives wherein the protein has been covalently modified by substitution, chemical, enzymatic, or other appropriate means with a moiety other than a naturally occurring amino acid (for example, a detectable moiety such as an enzyme or radioisotope).

Using known methods of protein engineering and recombinant DNA technology, variants can be generated to improve or alter the characteristics of the polypeptides of saccharolytic enzymes. For instance, one or more amino acids can be deleted from the N-terminus or C-terminus of the secreted protein without substantial loss of biological function.

Thus, in another aspect the invention further includes endoglucanase, glucosidase, cellobiohydrolase, xylanase, glucanase, xylosidase, xylan esterase, arabinofuranosidase, galactosidase, cellobiose phosphorylase, cellodextrin phosphorylase, mannanase, mannosidase, xyloglucanase, endoxylanase, glucuronidase, acetylxylanesterase, arabinofuranohydrolase, swollenin, glucuronyl esterase, expansin, pectinase, feruoyl esterase, alpha-amylase, beta-amylase, glucoamylase, pullulanase, isopullulanase, alpha-glucosidase, beta-glucosidase, galactosidase, arabinase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinose isomerase, ribulose-5-phosphate 4-epimerase, xylose isomerase, xylulokinase, xylose reductase, xylose dehydrogenase, xylitol dehydrogenase, xylonate dehydratase, xylose transketolase, and xylose transaldolase polypeptide variants which show substantial biological activity. Such variants include deletions, insertions, inversions, repeats, and substitutions selected according to general rules known in the art so as have little effect on activity.

The skilled artisan is fully aware of amino acid substitutions that are either less likely or not likely to significantly effect protein function (e.g., replacing one aliphatic amino acid with a second aliphatic amino acid), as further described below.

For example, guidance concerning how to make phenotypically silent amino acid substitutions is provided in Bowie et al., Deciphering the Message in Protein Sequences: Tolerance to Amino Acid Substitutions, Science 247:1306-1310 (1990), wherein the authors indicate that there are two main strategies for studying the tolerance of an amino acid sequence to change.

The first strategy exploits the tolerance of amino acid substitutions by natural selection during the process of evolution. By comparing amino acid sequences in different species, conserved amino acids can be identified. These conserved amino acids are likely important for protein function. In contrast, the amino acid positions where substitutions have been tolerated by natural selection indicates that these positions are not critical for protein function. Thus, positions tolerating amino acid substitution could be modified while still maintaining biological activity of the protein.

The second strategy uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene to identify regions critical for protein function. For example, site directed mutagenesis or alanine-scanning mutagenesis (introduction of single alanine mutations at every residue in the molecule) can be used. (Cunningham and Wells, Science 244:1081-1085 (1989).) The resulting mutant molecules can then be tested for biological activity.

As the authors state, these two strategies have revealed that proteins are often surprisingly tolerant of amino acid substitutions. The authors further indicate which amino acid changes are likely to be permissive at certain amino acid positions in the protein. For example, most buried (within the tertiary structure of the protein) amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved. Moreover, tolerated conservative amino acid substitutions involve replacement of the aliphatic or hydrophobic amino acids Ala, Val, Leu, and Ile; replacement of the hydroxyl residues Ser and Thr; replacement of the acidic residues Asp and Glu; replacement of the amide residues Asn and Gln, replacement of the basic residues Lys, Arg, and His; replacement of the aromatic residues Phe, Tyr, and Trp; and replacement of the small-sized amino acids Ala, Ser, Thr, Met, and Gly.

The terms “derivative” and “analog” refer to a polypeptide differing from the endoglucanases, glucosidases, cellobiohydrolases, xylanases, glucanases, xylosidases, xylan esterases, arabinofuranosidases, galactosidases, cellobiose phosphorylases, cellodextrin phosphorylases, mannanases, mannosidases, xyloglucanases, endoxylanases, glucuronidases, acetylxylanesterases, arabinofuranohydrolases, swollenins, glucuronyl esterases, expansins, pectinases, feruoyl esterase, alpha-amylase, beta-amylase, glucoamylase, pullulanase, isopullulanase, alpha-glucosidase, beta-glucosidase, galactosidase, arabinase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinoxylanase, arabinosidase, and arabinofuranosidase, arabinose isomerase, ribulose-5-phosphate 4-epimerase, xylose isomerase, xylulokinase, xylose reductase, xylose dehydrogenase, xylitol dehydrogenase, xylonate dehydratase, xylose transketolase, and xylose transaldolase polypeptides as disclosed herein, but retaining essential properties thereof. Generally, derivatives and analogs are overall closely similar, and, in many regions, identical to the endoglucanase, glucosidase, cellobiohydrolase, xylanase, glucanase, xylosidase, xylan esterase, arabinofuranosidase, galactosidase, cellobiose phosphorylase, cellodextrin phosphorylase, mannanase, mannosidase, xyloglucanase, endoxylanase, glucuronidase, acetylxylanesterase, arabinofuranohydrolase, swollenin, glucuronyl esterase, expansin, pectinase, feruoyl esterase, alpha-amylase, beta-amylase, glucoamylase, pullulanase, isopullulanase, alpha-glucosidase, beta-glucosidase, galactosidase, arabinase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinoxylanase, arabinosidase, and arabinofuranosidase, arabinose isomerase, ribulose-5-phosphate 4-epimerase, xylose isomerase, xylulokinase, xylose reductase, xylose dehydrogenase, xylitol dehydrogenase, xylonate dehydratase, xylose transketolase, and xylose transaldolase polypeptides disclosed herein.

The terms “derivative” and “analog” when referring to endoglucanases, glucosidases, cellobiohydrolases, xylanases, glucanases, xylosidases, xylan esterases, arabinofuranosidases, galactosidases, cellobiose phosphorylases, cellodextrin phosphorylases, mannanases, mannosidases, xyloglucanases, endoxylanases, glucuronidases, acetylxylanesterases, arabinofuranohydrolases, swollenins, glucuronyl esterases, expansins, pectinases, feruoyl esterase, alpha-amylase, beta-amylase, glucoamylase, pullulanase, isopullulanase, alpha-glucosidase, beta-glucosidase, galactosidase, arabinase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinose isomerase, ribulose-5-phosphate 4-epimerase, xylose isomerase, xylulokinase, xylose reductase, xylose dehydrogenase, xylitol dehydrogenase, xylonate dehydratase, xylose transketolase, and xylose transaldolase polypeptides include any polypeptides which retain at least some of the activity of the corresponding native polypeptide, e.g., the exoglucanase activity, or the activity of its catalytic domain.

Derivatives of the saccharolytic enzymes disclosed herein, are polypeptides which have been altered so as to exhibit features not found on the native polypeptide. Derivatives can be covalently modified by substitution, chemical, enzymatic, or other appropriate means with a moiety other than a naturally occurring amino acid (for example, a detectable moiety such as an enzyme or radioisotope). Examples of derivatives include fusion proteins.

An analog is another form of an endoglucanase, glucosidase, cellobiohydrolase, xylanase, glucanase, xylosidase, xylan esterase, arabinofuranosidase, galactosidase, cellobiose phosphorylase, cellodextrin phosphorylase, mannanase, mannosidase, xyloglucanase, endoxylanase, glucuronidase, acetylxylanesterase, arabinofuranohydrolase, swollenin, glucuronyl esterase, expansin, pectinase, feruoyl esterase, alpha-amylase, beta-amylase, glucoamylase, pullulanase, isopullulanase, alpha-glucosidase, beta-glucosidase, galactosidase, arabinase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinose isomerase, ribulose-5-phosphate 4-epimerase, xylose isomerase, xylulokinase, xylose reductase, xylose dehydrogenase, xylitol dehydrogenase, xylonate dehydratase, xylose transketolase, or xylose transaldolase polypeptide of the present invention. An “analog” also retains substantially the same biological function or activity as the polypeptide of interest, e.g., functions as a xylanase. An analog includes a proprotein which can be activated by cleavage of the proprotein portion to produce an active mature polypeptide.

The polypeptide of the present invention can be a recombinant polypeptide, a natural polypeptide or a synthetic polypeptide. In some particular embodiments, the polypeptide is a recombinant polypeptide.

Also provided in the present invention are allelic variants, orthologs, and/or species homologs. Procedures known in the art can be used to obtain full-length genes, allelic variants, splice variants, full-length coding portions, orthologs, and/or species homologs of genes corresponding to any of SEQ ID NOs:1-346 using information from the sequences disclosed herein or the clones deposited with the ATCC. For example, allelic variants and/or species homologs can be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source for allelic variants and/or the desired homologue.

Combinations of Saccharolytic Enzymes

In some embodiments of the present invention, the host cell expresses a combination of heterologous saccharolytic enzymes. For example, the host cell can contain at least two heterologous saccharolytic enzymes, at least three heterologous saccharolytic enzymes, at least four heterologous saccharolytic enzymes, at least five heterologous saccharolytic enzymes, at least six heterologous saccharolytic enzymes, at least seven heterologous saccharolytic enzymes, at least eight heterologous saccharolytic enzymes, at least nine heterologous saccharolytic enzymes, at least ten heterologous saccharolytic enzymes, at least eleven heterologous saccharolytic enzymes, at least twelve heterologous saccharolytic enzymes, at least thirteen heterologous saccharolytic enzymes, at least fourteen heterologous saccharolytic enzymes, at least fifteen heterologous saccharolytic enzymes, or any range of numbers of enzymes thereof. The heterologous saccharolytic enzymes in the host cell can be from the same species or from different species. In some embodiments, the host cell expresses heterologous enzymes comprising cellobiohydrolases, endo-gluconases, beta-glucosidases, xylanases, xylosidases, glucoamylases, alpha-amylases, alpha-glucosidases, pullulanases, isopullulanases, pectinases, or acetylxylan esterases.

In some embodiments, the host cell contains an acetylxylanesterase, a xylanase, and a xylosidase. In some embodiments, the host cell contains an acetylxylanesterase, a xylanase, a xylosidase, and a galactosidase. In some embodiments, the host cell contains an acetylxylanesterase, a xylanase, a xylosidase, a galactosidase, and a mannosidase. In some embodiments, the host cell contains an acetylxylanesterase, a xylanase, a xylosidase, a galactosidase, a mannosidase, and an alpha-glucuronidase. In some embodiments, the acetylxylanesterase is selected from SEQ ID NOs:6-10. In some embodiments, the xylanase is selected from SEQ ID NOs:37-62. In some embodiments, the xylosidase is selected from SEQ ID NOs:78-92. In some embodiments, the galactosidase is selected from SEQ ID NOs:108-122. In some embodiments, the mannosidase is selected from SEQ ID NOs:146-168. In some embodiments, the alpha-glucuronidase is selected from SEQ ID NOs:184-198.

In some embodiments, the host cell containing an acetylxylanesterase, xylanase, and xylosidase further comprises a heterologous polynucleotide comprising a nucleic acid which encodes an acetyl esterase. In some embodiments, the nucleic acid which encodes an acetyl esterase encodes a polypeptide comprising an amino acid sequence at least about 90%, 95%, 96%, 97%, 98% or 99% identical, or other percent identity disclosed herein, to any one of SEQ ID NOs:223-225. In some embodiments, the nucleic acid which encodes an acetyl esterase encodes a polypeptide comprising an amino acid sequence identical to any one of SEQ ID NOs:223-225. In some embodiments, the nucleic acid comprises any one of SEQ ID NOs:207-209 or a percent identity thereof disclosed herein.

In some embodiments, the host cell containing an acetylxylanesterase, xylanase, xylosidase, and acetyl esterase further comprises a heterologous polynucleotide comprising a nucleic acid which encodes an alpha-glucuronidase. In some embodiments, the nucleic acid which encodes an alpha-glucuronidase encodes a polypeptide comprising an amino acid sequence at least about 90%, 95%, 96%, 97%, 98% or 99% identical, or other percent identity disclosed herein, to any one of SEQ ID NOs:185-198. In some embodiments, the nucleic acid which encodes an alpha-glucuronidase encodes a polypeptide comprising an amino acid sequence identical to any one of SEQ ID NOs:185-198. In some embodiments, the nucleic acid comprises any one of SEQ ID NOs:170-183 or a percent identity thereof disclosed herein. In other embodiments, the host cell further comprises a heterologous polynucleotide comprising a nucleic acid which encodes a beta-glucosidase. In some embodiments, the nucleic acid which encodes a beta-glucosidase encodes a polypeptide comprising an amino acid sequence at least about 90%, 95%, 96%, 97%, 98% or 99% identical, or other percent identity disclosed herein, to any one of SEQ ID NOs:92, 164-168, 226 and 227. In some embodiments, the nucleic acid which encodes a beta-glucosidase encodes a polypeptide comprising an amino acid sequence identical to any one of SEQ ID NOs: 92, 164-168, 226 and 227. In some embodiments, the nucleic acid comprises any one of SEQ ID NOs:77, 141-145, 210 and 211 or a percent identity thereof disclosed herein. In some embodiments, the recombinant host cell further comprises a heterologous polynucleotide comprising a nucleic acid which encodes an alpha-galactosidase. In some embodiments, the nucleic acid which encodes an alpha-galactosidase encodes a polypeptide comprising an amino acid sequence at least about 90%, 95%, 96%, 97%, 98% or 99% identical to any one of SEQ ID NOs:108-122. In some embodiments, the nucleic acid which encodes an alpha-galactosidase encodes a polypeptide comprising an amino acid sequence identical to any one of SEQ ID NOs:108-122. In some embodiments, the recombinant host cell further comprises a heterologous polynucleotide comprising a nucleic acid which encodes a β-mannosidase. In some embodiments, the nucleic acid which encodes the β-mannosidase encodes a polypeptide that is at least about 90%, 95%, 96%, 97%, 98% or 99% identical to a sequence selected from SEQ ID NOs:147-168. In some embodiments, the nucleic acid which encodes the β-mannosidase encodes a polypeptide that is identical to a sequence selected from SEQ ID NOs:147-168.

In other embodiments, the recombinant host cell containing an acetylxylanesterase, xylanase, xylosidase and acetyl esterase further comprises a heterologous polynucleotide comprising a nucleic acid which encodes an alpha-galactosidase. In some embodiments, the nucleic acid which encodes an alpha-galactosidase encodes a polypeptide comprising an amino acid sequence at least about 90% identical, or other percent identity disclosed herein, to any one of SEQ ID NOs:108-122. In some embodiments, the nucleic acid which encodes an alpha-galactosidase encodes a polypeptide comprising an amino acid sequence identical to any one of SEQ ID NOs:108-122. In some embodiments, the nucleic acid comprises any one of SEQ ID NOs:93-107 or a percent identity thereof disclosed herein. In some embodiments, the recombinant host cell further comprises a heterologous polynucleotide comprising a nucleic acid which encodes an endoglucanase. In some embodiments, the nucleic acid which encodes an endoglucanase encodes a polypeptide comprising an amino acid sequence at least about 90% identical, or other percent identity disclosed herein, to any one of SEQ ID NOs:289-345. In some embodiments, the nucleic acid which encodes an endoglucanase encodes a polypeptide comprising an amino acid sequence identical to any one of SEQ ID NOs:289-345. In some embodiments, the nucleic acid comprises any one of SEQ ID NOs:231-287 or a percent identity thereof disclosed herein.

In some embodiments, the host cell comprises at least one saccharolytic enzyme encoding a polypeptide comprising an amino acid sequence of SEQ ID NOs:108, 115-122, 146, 155-168, 184, 188-197, 215-225, 227, 228, or combinations thereof. In some embodiments, the host cell comprises at least one saccharolytic enzyme encoding a polypeptide comprising an amino acid sequence of SEQ ID NOs:55, 92, 146, 147, 160-163, 215-230, 289-345, or combinations thereof.

In some embodiments, the host cell comprises saccharolytic enzymes encoded by SEQ ID NO:8, SEQ ID NO:37, and SEQ ID NO:78. In some embodiments, the host cell comprises saccharolytic enzymes encoded by SEQ ID NO:8, SEQ ID NO:37, SEQ ID NO:78 and SEQ ID NO:108. In some embodiments, the host cell comprises saccharolytic enzymes encoded by SEQ ID NO:8, SEQ ID NO:37, SEQ ID NO:78, SEQ ID NO:108, and SEQ ID NO:146. In some embodiments, the host cell comprises saccharolytic enzymes encoded by SEQ ID NO:8, SEQ ID NO:37, SEQ ID NO:78, SEQ ID NO:108, SEQ ID NO:146, and SEQ ID NO:184.

Tethered and Secreted Saccharolytic Enzymes

According to the present invention, the saccharolytic enzymes can be either tethered or secreted. As used herein, a protein is “tethered” to an organism's cell surface if at least one terminus of the protein is bound, covalently and/or electrostatically for example, to the cell membrane or cell wall. It will be appreciated that a tethered protein can include one or more enzymatic regions that can be joined to one or more other types of regions at the nucleic acid and/or protein levels (e.g., a promoter, a terminator, an anchoring domain, a linker, a signaling region, etc.). While the one or more enzymatic regions may not be directly bound to the cell membrane or cell wall (e.g., such as when binding occurs via an anchoring domain), the protein is nonetheless considered a “tethered enzyme” according to the present specification.

Tethering can, for example, be accomplished by incorporation of an anchoring domain into a recombinant protein that is heterologously expressed by a cell, or by prenylation, fatty acyl linkage, glycosyl phosphatidyl inositol anchors, or other suitable molecular anchors which can anchor the tethered protein to the cell membrane or cell wall of the host cell. A tethered protein can be tethered at its amino terminal end or optionally at its carboxy terminal end.

As used herein, “secreted” means released into the extracellular milieu, for example into the media. Although tethered proteins can have secretion signals as part of their immature amino acid sequence, they are maintained as attached to the cell surface, and do not fall within the scope of secreted proteins as used herein.

As used herein, “flexible linker sequence” refers to an amino acid sequence which links two amino acid sequences, for example, a cell wall anchoring amino acid sequence with an amino acid sequence that contains the desired enzymatic activity. The flexible linker sequence allows for necessary freedom for the amino acid sequence that contains the desired enzymatic activity to have reduced steric hindrance with respect to proximity to the cell and can also facilitate proper folding of the amino acid sequence that contains the desired enzymatic activity.

In some embodiments of the present invention, the tethered cellulase enzymes are tethered by a flexible linker sequence linked to an anchoring domain. In some embodiments, the anchoring domain is of CWP2 (for carboxy terminal anchoring) or FLO1 (for amino terminal anchoring) from S. cerevisiae.

In some embodiments, heterologous secretion signals can be added to the expression vectors of the present invention to facilitate the extra-cellular expression of cellulase proteins. In some embodiments, the heterologous secretion signal is the secretion signal from T. reesei Xyn2. In other embodiments, the heterologous secretion signal is the S. cerevisiae Invertase signal. In yet other embodiments, the heterologous secretion signal is the S. cerevisiae AF mating signal.

Fusion Proteins Comprising Saccharolytic Enzymes

The present invention also encompasses fusion proteins. For example, the fusion proteins can be a fusion of a heterologous saccharolytic enzyme and a second peptide. The heterologous saccharolytic enzyme and the second peptide can be fused directly or indirectly, for example, through a linker sequence. The fusion protein can comprise for example, a second peptide that is N-terminal to the heterologous saccharolytic enzyme and/or a second peptide that is C-terminal to the heterologous saccharolytic enzyme. Thus, in certain embodiments, the polypeptide of the present invention comprises a first polypeptide and a second polypeptide, wherein the first polypeptide comprises a heterologous saccharolytic enzyme.

According to one aspect of the present invention, the fusion protein can comprise a first and second polypeptide wherein the first polypeptide comprises a heterologous saccharolytic enzyme and the second polypeptide comprises a signal sequence. According to another embodiment, the fusion protein can comprise a first and second polypeptide, wherein the first polypeptide comprises a heterologous saccharolytic enzyme and the second polypeptide comprises a polypeptide used to facilitate purification or identification or a reporter peptide. The polypeptide used to facilitate purification or identification or the reporter peptide can be, for example, a HIS-tag, a GST-tag, an HA-tag, a FLAG-tag, a MYC-tag, or a fluorescent protein. In some embodiments, the fusion protein is a histidine tag fused to a saccharolytic enzyme.

According to yet another embodiment, the fusion protein can comprise a first and second polypeptide, wherein the first polypeptide comprises a heterologous saccharolytic enzyme and the second polypeptide comprises an anchoring peptide. In some embodiments, the anchoring domain is of CWP2 (for carboxy terminal anchoring) or FLO1 (for amino terminal anchoring) from S. cerevisiae.

According to yet another embodiment, the fusion protein can comprise a first and second polypeptide, wherein the first polypeptide comprises a heterologous saccharolytic enzyme and the second polypeptide comprises a cellulose binding module (CBM or SBM). In some embodiments, the CBM is from, for example, T. reesei Cbh1 or Cbh2 or from C. lucknowense Cbh2b. In some particular embodiments, the CBM is fused to an endoglucanase, glucosidase, cellobiohydrolase, xylanase, glucanase, xylosidase, xylan esterase, arabinofuranosidase, galactosidase, cellobiose phosphorylase, cellodextrin phosphorylase, mannanase, mannosidase, xyloglucanase, endoxylanase, glucuronidase, acetylxylanesterase, arabinofuranohydrolase, swollenin, glucuronyl esterase, expansin, pectinase, feruoyl esterase, alpha-amylase, beta-amylase, glucoamylase, pullulanase, isopullulanase, alpha-glucosidase, beta-glucosidase, galactosidase, arabinase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinoxylanase, arabinosidase, and arabinofuranosidase, arabinose isomerase, ribulose-5-phosphate 4-epimerase, xylose isomerase, xylulokinase, xylose reductase, xylose dehydrogenase, xylitol dehydrogenase, xylonate dehydratase, xylose transketolase, and/or xylose transaldolase.

In certain embodiments, the polypeptide of the present invention encompasses a fusion protein comprising a first polypeptide and a second polypeptide, wherein the first polypeptide is an endoglucanase, glucosidase, cellobiohydrolase, xylanase, glucanase, xylosidase, xylan esterase, arabinofuranosidase, galactosidase, cellobiose phosphorylase, cellodextrin phosphorylase, mannanase, mannosidase, xyloglucanase, endoxylanase, glucuronidase, acetylxylanesterase, arabinofuranohydrolase, swollenin, glucuronyl esterase, expansin, pectinase, feruoyl esterase, alpha-amylase, beta-amylase, glucoamylase, pullulanase, isopullulanase, alpha-glucosidase, beta-glucosidase, galactosidase, arabinase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinose isomerase, ribulose-5-phosphate 4-epimerase, xylose isomerase, xylulokinase, xylose reductase, xylose dehydrogenase, xylitol dehydrogenase, xylonate dehydratase, xylose transketolase, and/or xylose transaldolase; and the second polypeptide is selected from a polypeptide encoded by a domain or fragment of a saccharolytic enzyme disclosed herein. In certain embodiments, the polypeptides of the present invention encompass a fusion protein comprising a first saccharolytic enzyme polypeptide, wherein the first polypeptide is a domain, derivative, or fragment of any saccharolytic enzyme polypeptide disclosed herein, and a second polypeptide, where the second polypeptide is a T. emersonii Cbh1 H. grisea Cbh1, T. aurantiacusi Cbh1, T. emersonii Cbh2, T. reesei Cbh1, T. reesei Cbh2, C. lucknowense Cbh2b, or domain, fragment, variant, or derivative thereof. In additional embodiments, the first polypeptide is either N-terminal or C-terminal to the second polypeptide. In certain other embodiments, the first polypeptide and/or the second polypeptide are encoded by codon-optimized polynucleotides, for example, polynucleotides codon-optimized for S. cerevisiae or Kluyveromyces.

In certain other embodiments, the first polypeptide and the second polypeptide are fused via a linker sequence. The linker sequence can, in some embodiments, be encoded by a codon-optimized polynucleotide. (Codon-optimized polynucleotides are described in more detail below.) An amino acid sequence corresponding to a codon-optimized linker 1 according to the invention is a flexible linker-strep tag-TEV site-FLAG-flexible linker fusion and corresponds to GGGGSGGGGS AWHPQFGG ENLYFQG DYKDDDK GGGGSGGGGS (SEQ ID NO:443). In some embodiments, the linker is ddddkggsppshhhhhh, where ddddk is the enterokinase cleavage site, the ggspps is the linker site and hhhhhh is the His tag (SEQ ID NO: 602).

An exemplary DNA sequence is as follows: GGAGGAGGTGGTTCAGGAGGTGGTGGGTCTGCTTGGCATCCACAATTTGGAG GAGGCGGTGGTGAAAATCTGTATTTCCAGGGAGGCGGAGGTGATTACAAGGA TGACGACAAAGGAGGTGGTGGATCAGGAGGTGGTGGCTCC (SEQ ID NO:444).

An amino acid sequence corresponding to optimized linker 2 is a flexible linker-strep tag-linker-TEV site-flexible linker and corresponds to GGGGSGGGGS WSHPQFEK GG ENLYFQG GGGGSGGGGS (SEQ ID NO:445).

The DNA sequence is as follows: ggtggcggtggatctggaggaggcggttcttggtctcacccacaatttgannagggtggaganaacttgtactttcaaggeggtg gtggaggttctggcggaggtggctccggctca (SEQ ID NO:446).

Co-Cultures

In another aspect, the present invention is directed to co-cultures comprising at least two yeast host cells wherein the at least two yeast host cells each comprise an isolated polynucleotide encoding a saccharolytic enzyme. As used herein, “co-culture” refers to growing two different strains or species of host cells together in the same vessel. In some embodiments of the invention, at least one host cell of the co-culture comprises a heterologous polynucleotide comprising a nucleic acid which encodes an endoglucanase, glucosidase, cellobiohydrolase, xylanase, glucanase, xylosidase, xylan esterase, arabinofuranosidase, galactosidase, cellobiose phosphorylase, cellodextrin phosphorylase, mannanase, mannosidase, xyloglucanase, endoxylanase, glucuronidase, acetylxylanesterase, arabinofuranohydrolase, swollenin, glucuronyl esterase, expansin, pectinase, feruoyl esterase, alpha-amylase, beta-amylase, glucoamylase, alpha-glucosidase, pullulanase, isopullulanase, galactosidase, arabinase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinose isomerase, ribulose-5-phosphate 4-epimerase, xylose isomerase, xylulokinase, xylose reductase, xylose dehydrogenase, xylitol dehydrogenase, xylonate dehydratase, xylose transketolase, and/or xylose transaldolase. In some embodiments, at least one host cell of the co-culture comprises a heterologous polynucleotide comprising a nucleic acid which encodes a different endoglucanase, glucosidase, cellobiohydrolase, xylanase, glucanase, xylosidase, xylan esterase, arabinofuranosidase, galactosidase, cellobiose phosphorylase, cellodextrin phosphorylase, mannanase, mannosidase, xyloglucanase, endoxylanase, glucuronidase, acetylxylanesterase, arabinofuranohydrolase, swollenin, glucuronyl esterase, expansin, pectinase, feruoyl esterase, alpha-amylase, beta-amylase, glucoamylase, alpha-glucosidase, beta-glucosidase, pullulanase, isopullulanase, galactosidase, arabinase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinose isomerase, ribulose-5-phosphate 4-epimerase, xylose isomerase, xylulokinase, xylose reductase, xylose dehydrogenase, xylitol dehydrogenase, xylonate dehydratase, xylose transketolase, or xylose transaldolase, and at least one host cell comprises a heterologous polynucleotide comprising a nucleic acid which encodes a still different endoglucanase, glucosidase, cellobiohydrolase, xylanase, glucanase, xylosidase, xylan esterase, galactosidase, cellobiose phosphorylase, cellodextrin phosphorylase, mannanase, mannosidase, xyloglucanase, endoxylanase, glucuronidase, acetylxylanesterase, arabinofuranohydrolase, swollenin, glucuronyl esterase, expansin, pectinase, feruoyl esterase, alpha-amylase, beta-amylase, glucoamylase, alpha-glucosidase, beta-glucosidase, pullulanase, isopullulanase, galactosidase, arabinase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinose isomerase, ribulose-5-phosphate 4-epimerase, xylose isomerase, xylulokinase, xylose reductase, xylose dehydrogenase, xylitol dehydrogenase, xylonate dehydratase, xylose transketolase, and/or xylose transaldolase.

The co-culture can comprise two or more strains of yeast host cells, and the heterologous saccharolytic enzymes can be expressed in any combination in the two or more strains of host cells. For example, according to the present invention, the co-culture can comprise two strains: one strain of host cells that expresses an endoglucanase and a second strain of host cells that expresses a β-glucosidase, a cellobiohydrolase and a second cellobiohydrolase. Similarly, the co-culture can comprise one strain of host cells that expresses two saccharolytic enzymes, for example an endoglucanase and a beta-glucosidase and a second strain of host cells that expresses one or more saccharolytic enzymes, for example one or more endoglucanase, glucosidase, cellobiohydrolase, xylanase, glucanase, xylosidase, xylan esterase, arabinofuranosidase, galactosidase, cellobiose phosphorylase, cellodextrin phosphorylase, mannanase, mannosidase, xyloglucanase, endoxylanase, glucuronidase, acetylxylanesterase, arabinofuranohydrolase, swollenin, glucuronyl esterase, expansin, pectinase, feruoyl esterase, alpha-amylase, beta-amylase, glucoamylase, pullulanase, isopullulanase, alpha-glucosidase, beta-glucosidase, galactosidase, arabinase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinose isomerase, ribulose-5-phosphate 4-epimerase, xylose isomerase, xylulokinase, xylose reductase, xylose dehydrogenase, xylitol dehydrogenase, xylonate dehydratase, xylose transketolase, and/or xylose transaldolase. The co-culture can, in addition to the at least two host cells comprising heterologous saccharolytic enzymes, also include other host cells which do not comprise heterologous saccharolytic enzymes. The co-culture can comprise one strain expressing an endoglucanase, glucosidase, cellobiohydrolase, xylanase, glucanase, xylosidase, xylan esterase, arabinofuranosidase, galactosidase, cellobiose phosphorylase, cellodextrin phosphorylase, mannanase, mannosidase, xyloglucanase, endoxylanase, glucuronidase, acetylxylanesterase, arabinofuranohydrolase, swollenin, glucuronyl esterase, expansin, pectinase, feruoyl esterase, alpha-amylase, beta-amylase, glucoamylase, pullulanase, isopullulanase, alpha-glucosidase, beta-glucosidase, galactosidase, arabinase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinose isomerase, ribulose-5-phosphate 4-epimerase, xylose isomerase, xylulokinase, xylose reductase, xylose dehydrogenase, xylitol dehydrogenase, xylonate dehydratase, xylose transketolase, and/or xylose transaldolase; and a second host cell expressing an endoglucanase, glucosidase, cellobiohydrolase, xylanase, glucanase, xylosidase, xylan esterase, arabinofuranosidase, galactosidase, cellobiose phosphorylase, cellodextrin phosphorylase, mannanase, mannosidase, xyloglucanase, endoxylanase, glucuronidase, acetylxylanesterase, arabinofuranohydrolase, swollenin, glucuronyl esterase, expansin, pectinase, feruoyl esterase, alpha-amylase, beta-amylase, glucoamylase, pullulanase, isopullulanase, alpha-glucosidase, beta-glucosidase, galactosidase, arabinase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinose isomerase, ribulose-5-phosphate 4-epimerase, xylose isomerase, xylulokinase, xylose reductase, xylose dehydrogenase, xylitol dehydrogenase, xylonate dehydratase, xylose transketolase, and/or xylose transaldolase.

The various host cell strains in the co-culture can be present in equal numbers, or one strain or species of host cell can significantly outnumber another second strain or species of host cells. For example, in a co-culture comprising two strains or species of host cells the ratio of one host cell to another can be about 1:1, about 1:2, about 1:3, about 1:4, about 1:5, about 1:10, about 1:100, about 1:500 or about 1:1000. Similarly, in a co-culture comprising three or more strains or species of host cells, the strains or species of host cells can be present in equal or unequal numbers.

Biomass feedstocks contain varying proportions of starch, lignocellulose, or pentose sugars. Therefore, in one aspect, yeast strains express different saccharolytic enzymes at different levels.

In some embodiments, a host cell comprising polynucleotides that encode for an acetylxylanesterase, xylanase, xylosidase, alpha-galactosidase, and alpha-glucuronidase is co-cultured with at least one host cell selected from the following: a host cell comprising a polynucleotide encoding a beta-mannosidase, a host cell comprising a polynucleotide encoding a beta-mannanase, a host cell comprising a polynucleotide encoding an endoglucanase I, a host cell comprising a polynucleotide encoding a beta-glucosidase, and a host cell comprising a polynucleotide encoding an acetyl esterase. In some embodiments, a host cell comprising polynucleotides that encode for an acetylxylanesterase, xylanase, xylosidase, alpha-galactosidase, and alpha-glucuronidase is co-cultured with at least two host cells selected from the following: a host cell comprising a polynucleotide encoding a beta-mannosidase, a host cell comprising a polynucleotide encoding a beta-mannanase, a host cell comprising a polynucleotide encoding an endoglucanase I, a host cell comprising a polynucleotide encoding a beta-glucosidase, and a host cell comprising a polynucleotide encoding an acetyl esterase. In some embodiments, a host cell comprising polynucleotides that encode for an acetylxylanesterase, xylanase, xylosidase, alpha-galactosidase, and alpha-glucuronidase is co-cultured with at least three host cells selected from the following: a host cell comprising a polynucleotide encoding a beta-mannosidase, a host cell comprising a polynucleotide encoding a beta-mannanase, a host cell comprising a polynucleotide encoding an endoglucanase I, a host cell comprising a polynucleotide encoding a beta-glucosidase, and a host cell comprising a polynucleotide encoding an acetyl esterase. In some embodiments, a host cell comprising polynucleotides that encode for an acetylxylanesterase, xylanase, xylosidase, alpha-galactosidase, and alpha-glucuronidase is co-cultured with at least four host cells selected from the following: a host cell comprising a polynucleotide encoding a beta-mannosidase, a host cell comprising a polynucleotide encoding a beta-mannanase, a host cell comprising a polynucleotide encoding an endoglucanase I, a host cell comprising a polynucleotide encoding a beta-glucosidase, and a host cell comprising a polynucleotide encoding an acetyl esterase. In some embodiments, a host cell comprising polynucleotides that encode for an acetylxylanesterase, xylanase, xylosidase, alpha-galactosidase, and alpha-glucuronidase is co-cultured with a host cell comprising a polynucleotide encoding a beta-mannosidase, a host cell comprising a polynucleotide encoding a beta-mannanase, a host cell comprising a polynucleotide encoding an endoglucanase I, a host cell comprising a polynucleotide encoding a beta-glucosidase, and a host cell comprising a polynucleotide encoding an acetyl esterase.

In some embodiments, the co-culture is comprised of any of the previously described host cells, a recombinant yeast host cell comprising a heterologous polynucleotide comprising a nucleic acid which encodes a polypeptide comprising an amino acid sequence identical to SEQ ID NO:146, a recombinant yeast host cell comprising a heterologous polynucleotide comprising a nucleic acid which encodes a polypeptide comprising an amino acid sequence identical to SEQ ID NO:147, a recombinant yeast host cell comprising a heterologous polynucleotide comprising a nucleic acid which encodes a polypeptide comprising an amino acid sequence identical to SEQ ID NO:289, a recombinant yeast host cell comprising a heterologous polynucleotide comprising a nucleic acid which encodes a polypeptide comprising an amino acid sequence identical to SEQ ID NO:226, and/or a recombinant yeast host cell comprising a heterologous polynucleotide comprising a nucleic acid which encodes a polypeptide comprising an amino acid sequence identical to SEQ ID NO:224.

In some embodiments, the co-culture is comprised of any of the previously described host cells and at least one host cell selected from the group consisting of: a recombinant yeast host cell comprising a heterologous polynucleotide comprising a nucleic acid which encodes a polypeptide comprising an amino acid sequence at least about 90%, 95%, 96%, 97%, 98% or 99% identical to any one of SEQ ID NOs:146, 147, 160-163, 215-222, and 228-230, a recombinant yeast host cell comprising a heterologous polynucleotide comprising a nucleic acid which encodes a polypeptide comprising an amino acid sequence at least about 90%, 95%, 96%, 97%, 98% or 99% identical to any one of SEQ ID NOs:54 and 289-345; a recombinant yeast host cell comprising a heterologous polynucleotide comprising a nucleic acid which encodes a polypeptide comprising an amino acid sequence at least about 90%, 95%, 96%, 97%, 98% or 99% identical to any one of SEQ ID NOs:92, 226, and 227; and a recombinant yeast host cell comprising a heterologous polynucleotide comprising a nucleic acid which encodes a polypeptide comprising an amino acid sequence at least about 90%, 95%, 96%, 97%, 98% or 99% identical to any one of SEQ ID NOs:223-225.

In some embodiments, the co-culture comprises one or more of yeast strains M3318, M2295, M3240, M3460, M4494, M2963, M4042, M4044, M4638, M4642, M4777, M4782, M4821, M4836, M4888, M5401, M5453, or any other strain described herein.

The co-cultures of the present invention can include tethered saccharolytic enzymes, secreted saccharolytic enzymes, or both tethered and secreted saccharolytic enzymes. For example, in some embodiments of the invention, the co-culture comprises at least one yeast host cell comprising a polynucleotide encoding a secreted heterologous saccharolytic enzyme. In another embodiment, the co-culture comprises at least one yeast host cell comprising a polynucleotide encoding a tethered heterologous saccharolytic enzyme. In one embodiment, all of the heterologous saccharolytic enzymes in the co-culture are secreted, and in another embodiment, all of the heterologous saccharolytic enzymes in the co-culture are tethered. In addition, other saccharolytic enzymes, such as externally added saccharolytic enzymes can be present in the co-culture.

Polynucleotides Encoding Heterologous Saccharolytic Enzymes

In another aspect, the present invention includes isolated polynucleotides encoding saccharolytic enzymes of the present invention. Thus, the polynucleotides of the invention can encode for example, endoglucanases, exoglucanases, amylases, or pentose sugar utilizing enzymes. The polynucleotides can encode an endoglucanase, glucosidase, cellobiohydrolase, xylanase, glucanase, xylosidase, xylan esterase, arabinofuranosidase, galactosidase, cellobiose phosphorylase, cellodextrin phosphorylase, mannanase, mannosidase, xyloglucanase, endoxylanase, glucuronidase, acetylxylanesterase, arabinofuranohydrolase, swollenin, glucuronyl esterase, expansin, pectinase, feruoyl esterase, alpha-amylase, beta-amylase, glucoamylase, pullulanase, isopullulanase, alpha-glucosidase, beta-glucosidase, galactosidase, arabinase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinose isomerase, ribulose-5-phosphate 4-epimerase, xylose isomerase, xylulokinase, xylose reductase, xylose dehydrogenase, xylitol dehydrogenase, xylonate dehydratase, xylose transketolase, and/or xylose transaldolase.

The present invention also encompasses an isolated polynucleotide comprising a nucleic acid that is at least about 70%, at least about 75%, at least about 80%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, 100% identical, or any range of values thereof, to a nucleic acid encoding an endoglucanase, glucosidase, cellobiohydrolase, xylanase, glucanase, xylosidase, xylan esterase, arabinofuranosidase, galactosidase, cellobiose phosphorylase, cellodextrin phosphorylase, mannanase, mannosidase, xyloglucanase, endoxylanase, glucuronidase, acetylxylanesterase, arabinofuranohydrolase, swollenin, glucuronyl esterase, expansin, pectinase, feruoyl esterase, alpha-amylase, beta-amylase, glucoamylase, pullulanase, isopullulanase, alpha-glucosidase, beta-glucosidase, galactosidase, arabinase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinoxylanase, arabinosidase, and arabinofuranosidase, arabinose isomerase, ribulose-5-phosphate 4-epimerase, xylose isomerase, xylulokinase, xylose reductase, xylose dehydrogenase, xylitol dehydrogenase, xylonate dehydratase, xylose transketolase, and/or xylose transaldolase disclosed herein.

The present invention also encompasses variants of the saccharolytic enzyme genes, as described above. Variants can contain alterations in the coding regions, non-coding regions, or both coding and non-coding regions. Examples of polynucleotide variants include those containing alterations which produce silent substitutions, additions, or deletions, but do not alter the properties or activities of the encoded polypeptide. In certain embodiments, nucleotide variants are produced by silent substitutions due to the degeneracy of the genetic code. In further embodiments, endoglucanase, glucosidase, cellobiohydrolase, xylanase, glucanase, xylosidase, xylan esterase, arabinofuranosidase, galactosidase, cellobiose phosphorylase, cellodextrin phosphorylase, mannanase, mannosidase, xyloglucanase, endoxylanase, glucuronidase, acetylxylanesterase, arabinofuranohydrolase, swollenin, glucuronyl esterase, expansin, pectinase, feruoyl esterase, alpha-amylase, beta-amylase, glucoamylase, pullulanase, isopullulanase, alpha-glucosidase, beta-glucosidase, galactosidase, arabinase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinose isomerase, ribulose-5-phosphate 4-epimerase, xylose isomerase, xylulokinase, xylose reductase, xylose dehydrogenase, xylitol dehydrogenase, xylonate dehydratase, xylose transketolase, or xylose transaldolase polynucleotide variants can be produced for a variety of reasons, e.g., to optimize codon expression for a particular host. Codon-optimized polynucleotides of the present invention are discussed further below.

The present invention also encompasses an isolated polynucleotide encoding a fusion protein. In certain embodiments, the nucleic acid encoding a fusion protein comprises a first polynucleotide encoding a endoglucanase, glucosidase, cellobiohydrolase, xylanase, glucanase, xylosidase, xylan esterase, arabinofuranosidase, galactosidase, cellobiose phosphorylase, cellodextrin phosphorylase, mannanase, mannosidase, xyloglucanase, endoxylanase, glucuronidase, acetylxylanesterase, arabinofuranohydrolase, swollenin, glucuronyl esterase, expansin, pectinase, feruoyl esterase, alpha-amylase, beta-amylase, glucoamylase, pullulanase, isopullulanase, alpha-glucosidase, beta-glucosidase, galactosidase, arabinase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinose isomerase, ribulose-5-phosphate 4-epimerase, xylose isomerase, xylulokinase, xylose reductase, xylose dehydrogenase, xylitol dehydrogenase, xylonate dehydratase, xylose transketolase, or xylose transaldolase as disclosed herein and a CBD (as described above).

In further embodiments, the first and second polynucleotides are in the same orientation, or the second polynucleotide is in the reverse orientation of the first polynucleotide. In additional embodiments, the first polynucleotide encodes a polypeptide that is either N-terminal or C-terminal to the polypeptide encoded by the second polynucleotide. In certain other embodiments, the first polynucleotide and/or the second polynucleotide are encoded by codon-optimized polynucleotides, for example, polynucleotides codon-optimized for S. cerevisiae, Kluyveromyces or for both S. cerevisiae and Kluyveromyces.

Also provided in the present invention are allelic variants, orthologs, and/or species homologs. Procedures known in the art can be used to obtain full-length genes, allelic variants, splice variants, full-length coding portions, orthologs, and/or species homologs of genes corresponding to any of SEQ ID NOs:1-346, using information from the sequences disclosed herein or the clones deposited with the ATCC or otherwise publically available. For example, allelic variants and/or species homologs can be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source for allelic variants and/or the desired homologue.

By a nucleic acid having a nucleotide sequence at least, for example, 95% “identical” to a reference nucleotide sequence of the present invention, it is intended that the nucleotide sequence of the nucleic acid is identical to the reference sequence except that the nucleotide sequence can include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence encoding the particular polypeptide. In other words, to obtain a nucleic acid having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence can be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence can be inserted into the reference sequence. The query sequence can be an entire sequence shown of any of SEQ ID NOs:1-346, or any fragment or domain specified as described herein.

As a practical matter, whether any particular nucleic acid molecule or polypeptide is at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identical to a nucleotide sequence or polypeptide of the present invention can be determined conventionally using known computer programs. A method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al., Comp. App. Biosci. 6:237-245 (1990)). In a sequence alignment the query and subject sequences are both DNA sequences. An RNA sequence can be compared by converting U's to T's. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB alignment of DNA sequences to calculate percent identity are: Matrix=Unitary, k-tuple=4, Mismatch Penalty=1, Joining Penalty=30, Randomization Group Length=0, Cutoff Score=1, Gap Penalty=5, Gap Size Penalty 0.05, Window Size=500 or the length of the subject nucleotide sequence, whichever is shorter.

If the subject sequence is shorter than the query sequence because of 5′ or 3′ deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for 5′ and 3′ truncations of the subject sequence when calculating percent identity. For subject sequences truncated at the 5′ or 3′ ends, relative to the query sequence, the percent identity is corrected by calculating the number of bases of the query sequence that are 5′ and 3′ of the subject sequence, which are not matched/aligned, as a percent of the total bases of the query sequence. Whether a nucleotide is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This corrected score is what is used for the purposes of the present invention. Only bases outside the 5′ and 3′ bases of the subject sequence, as displayed by the FASTDB alignment, which are not matched/aligned with the query sequence, are calculated for the purposes of manually adjusting the percent identity score.

For example, a 90 base subject sequence is aligned to a 100 base query sequence to determine percent identity. The deletions occur at the 5′ end of the subject sequence and therefore, the FASTDB alignment does not show a matched/alignment of the first 10 bases at 5′ end. The 10 unpaired bases represent 10% of the sequence (number of bases at the 5′ and 3′ ends not matched/total number of bases in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 bases were perfectly matched the final percent identity would be 90%. In another example, a 90 base subject sequence is compared with a 100 base query sequence. This time the deletions are internal deletions so that there are no bases on the 5′ or 3′ of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only bases 5′ and 3′ of the subject sequence which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are to be made for the purposes of the present invention.

Some embodiments of the invention encompass a nucleic acid molecule comprising at least 10, at least 20, at least 30, at least 35, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 200, at least 300, at least 400, at least 500, at least 600, at least 700, or at least 800 consecutive nucleotides, or more, of any of SEQ ID NO. disclosed herein, or domains, fragments, variants, or derivatives thereof.

The polynucleotide of the present invention can be in the form of RNA or in the form of DNA, which DNA includes cDNA, genomic DNA, and synthetic DNA. The DNA can be double stranded or single-stranded, and if single stranded can be the coding strand or non-coding (anti-sense) strand. The coding sequence which encodes the mature polypeptide can be identical to the coding sequence encoding any SEQ ID NO. disclosed herein, or can be a different coding sequence which coding sequence, as a result of the redundancy or degeneracy of the genetic code, encodes the same mature polypeptide as the nucleic acid sequences of any SEQ ID NO. disclosed herein.

In certain embodiments, the present invention provides an isolated polynucleotide comprising a nucleic acid fragment which encodes at least 10, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90, at least 95, or at least 100 or more contiguous amino acids of any SEQ ID NO. disclosed herein.

The polynucleotide encoding for the mature polypeptide of any SEQ ID NO. disclosed herein can include: only the coding sequence for the mature polypeptide; the coding sequence of any domain of the mature polypeptide; or the coding sequence for the mature polypeptide (or domain-encoding sequence) together with non-coding sequence, such as introns or non-coding sequence 5′ and/or 3′ of the coding sequence for the mature polypeptide.

Thus, the term “polynucleotide encoding a polypeptide” encompasses a polynucleotide which includes only sequences encoding for the polypeptide as well as a polynucleotide which includes additional coding and/or non-coding sequences.

In further aspects of the invention, nucleic acid molecules having sequences at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% identical to the nucleic acid sequences disclosed herein encoding a polypeptide having an endoglucanase, glucosidase, cellobiohydrolase, xylanase, glucanase, xylosidase, xylan esterase, arabinofuranosidase, galactosidase, cellobiose phosphorylase, cellodextrin phosphorylase, mannanase, mannosidase, xyloglucanase, endoxylanase, glucuronidase, acetylxylanesterase, arabinofuranohydrolase, swollenin, glucuronyl esterase, expansin, pectinase, feruoyl esterase, alpha-amylase, beta-amylase, glucoamylase, pullulanase, isopullulanase, alpha-glucosidase, beta-glucosidase, galactosidase, arabinase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinoxylanase, arabinosidase, arabinose isomerase, ribulose-5-phosphate 4-epimerase, xylose isomerase, xylulokinase, xylose reductase, xylose dehydrogenase, xylitol dehydrogenase, xylonate dehydratase, xylose transketolase, or xylose transaldolase functional activity.

Of course, due to the degeneracy of the genetic code, one of ordinary skill in the art will immediately recognize that a large portion of the nucleic acid molecules having a sequence at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the nucleic acid sequence disclosed herein, or fragments thereof, will encode polypeptides having functional activity. In fact, since degenerate variants of any of these nucleotide sequences all encode the same polypeptide, in many instances, this will be clear to the skilled artisan even without performing the above described comparison assay. It will be further recognized in the art that, for such nucleic acid molecules that are not degenerate variants, a reasonable number will also encode a polypeptide having functional activity.

The polynucleotides of the present invention also comprise nucleic acids encoding an endoglucanase, glucosidase, cellobiohydrolase, xylanase, glucanase, xylosidase, xylan esterase, arabinofuranosidase, galactosidase, cellobiose phosphorylase, cellodextrin phosphorylase, mannanase, mannosidase, xyloglucanase, endoxylanase, glucuronidase, acetylxylanesterase, arabinofuranohydrolase, swollenin, glucuronyl esterase, expansin, pectinase, feruoyl esterase, alpha-amylase, beta-amylase, glucoamylase, pullulanase, isopullulanase, alpha-glucosidase, beta-glucosidase, galactosidase, arabinase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinoxylanase, arabinosidase, arabinose isomerase, ribulose-5-phosphate 4-epimerase, xylose isomerase, xylulokinase, xylose reductase, xylose dehydrogenase, xylitol dehydrogenase, xylonate dehydratase, xylose transketolase, or xylose transaldolase, or a domain, fragment, variant, or derivative thereof, fused to a polynucleotide encoding a marker sequence which allows for detection of the polynucleotide of the present invention. In one embodiment of the invention, expression of the marker sequence is independent from expression of the saccharolytic enzyme. The marker sequence can be a yeast selectable marker selected from the group consisting of URA3, HIS3, LEU2, TRP1, LYS2, ADE2 or any other suitable selectable marker known in the art. Casey, G. P. et al., A convenient dominant selection marker for gene transfer in industrial strains of Saccharomyces yeast: SMR1 encoded resistance to the herbicide sulfometuron methyl, J. Inst. Brew. 94:93-97 (1988).

Codon Optimized Polynucleotides

According to one embodiment of the invention, the polynucleotides encoding heterologous saccharolytic enzymes can be codon-optimized. As used herein, the term “codon-optimized coding region” means a nucleic acid coding region that has been adapted for expression in the cells of a given organism by replacing at least one, or more than one, or a significant number, of codons with one or more codons that are more frequently used in the genes of that organism.

In general, highly expressed genes in an organism are biased towards codons that are recognized by the most abundant tRNA species in that organism. One measure of this bias is the “codon adaptation index” or “CAI,” which measures the extent to which the codons used to encode each amino acid in a particular gene are those which occur most frequently in a reference set of highly expressed genes from an organism.

The CAI of codon optimized sequences of the present invention corresponds to between about 0.8 and 1.0, between about 0.8 and 0.9, or about 1.0. A codon optimized sequence can be further modified for expression in a particular organism, depending on that organism's biological constraints. For example, large runs of “As” or “Ts” (e.g., runs greater than 4, greater than 5, greater than 6, greater than 7, greater than 8, greater than 9, or greater than 10 consecutive bases) can be removed from the sequences if these are known to effect transcription negatively. Furthermore, specific restriction enzyme sites can be removed for molecular cloning purposes. Examples of such restriction enzyme sites include, for example, PacI, AscI, BamHI, BgIII, EcoRI, and XhoI. Additionally, the DNA sequence can be checked for direct repeats, inverted repeats and mirror repeats with lengths of ten bases or longer, which can be modified manually by replacing codons with “second best” codons, i.e., codons that occur at the second highest frequency within the particular organism for which the sequence is being optimized.

Deviations in the nucleotide sequence that comprise the codons encoding the amino acids of any polypeptide chain allow for variations in the sequence coding for the gene. Since each codon consists of three nucleotides, and the nucleotides comprising DNA are restricted to four specific bases, there are 64 possible combinations of nucleotides, 61 of which encode amino acids (the remaining three codons encode signals ending translation). The “genetic code” which shows which codons encode which amino acids is reproduced herein as Table 1. As a result, many amino acids are designated by more than one codon. For example, the amino acids alanine and proline are coded for by four triplets, serine and arginine by six, whereas tryptophan and methionine are coded by just one triplet. This degeneracy allows for DNA base composition to vary over a wide range without altering the amino acid sequence of the proteins encoded by the DNA.

TABLE 1

The Standard Genetic Code

T

C

A

G

T

TTT Phe (F)

TCT Ser (S)

TAT Tyr (Y)

TGT Cys (C)

TTC ″

TCC ″

TAC ″

TGC

TTA Leu (L)

TCA ″

TAA Ter

TGA Ter

TTG ″

TCG ″

TAG Ter

TGG Trp (W)

C

CTT Leu (L)

CCT Pro (P)

CAT His (H)

CGT Arg (R)

CTC ″

CCC ″

CAC ″

CGC ″

CTA ″

CCA ″

CAA Gln (Q)

CGA ″

CTG ″

CCG ″

CAG ″

CGG ″

A

ATT Ile (I)

ACT Thr (T)

AAT Asn (N)

AGT Ser (S)

ATC ″

ACC ″

AAC ″

AGC ″

ATA ″

ACA ″

AAA Lys (K)

AGA Arg (R)

ATG Met (M)

ACG ″

AAG ″

AGG ″

G

GTT Val (V)

GCT Ala (A)

GAT Asp (D)

GGT Gly (G)

GTC ″

GCC ″

GAC ″

GGC ″

GTA ″

GCA ″

GAA Glu (E)

GGA ″

GTG ″

GCG ″

GAG ″

GGG ″

Many organisms display a bias for use of particular codons to code for insertion of a particular amino acid in a growing peptide chain. Codon preference or codon bias, differences in codon usage between organisms, is afforded by degeneracy of the genetic code, and is well documented among many organisms. Codon bias often correlates with the efficiency of translation of messenger RNA (mRNA), which is in turn believed to be dependent on, inter alia, the properties of the codons being translated and the availability of particular transfer RNA (tRNA) molecules. The predominance of selected tRNAs in a cell is generally a reflection of the codons used most frequently in peptide synthesis. Accordingly, genes can be tailored for optimal gene expression in a given organism based on codon optimization.

Given the large number of gene sequences available for a wide variety of animal, plant and microbial species, it is possible to calculate the relative frequencies of codon usage. Codon usage Tables are readily available, for example, at http://www.kazusa.or.jp/codon/ (visited Aug. 24, 2012), and these tables can be adapted in a number of ways. See Nakamura, Y., et al., Codon usage tabulated from the international DNA sequence databases: status for the year 2000, Nucl. Acids Res. 28:292 (2000). Codon usage tables for yeast, calculated from GenBank Release 128.0 [15 Feb. 2002], are reproduced below as Table 2. This Table uses mRNA nomenclature, and so instead of thymine (T) which is found in DNA, the tables use uracil (U) which is found in RNA. The Table has been adapted so that frequencies are calculated for each amino acid, rather than for all 64 codons.

TABLE 2

Codon Usage Table for Saccharomyces cerevisiae Genes

Amino

Frequency per

Acid

Codon

Number

hundred

Phe

UUU

170666

26.1

Phe

UUC

120510

18.4

Total

Leu

UUA

170884

26.2

Leu

UUG

177573

27.2

Leu

CUU

80076

12.3

Leu

CUC

35545

5.4

Leu

CUA

87619

13.4

Leu

CUG

68494

10.5

Total

Ile

AUU

196893

30.1

Ile

AUC

112176

17.2

Ile

AUA

116254

17.8

Total

Met

AUG

136805

20.9

Total

Val

GUU

144243

22.1

Val

GUC

76947

11.8

Val

GUA

76927

11.8

Val

GUG

70337

10.8

Total

Ser

UCU

153557

23.5

Ser

UCC

92923

14.2

Ser

UCA

122028

18.7

Ser

UCG

55951

8.6

Ser

AGU

92466

14.2

Ser

AGC

63726

9.8

Total

Pro

CCU

88263

13.5

Pro

CCC

44309

6.8

Pro

CCA

119641

18.3

Pro

CCG

34597

5.3

Total

Thr

ACU

132522

20.3

Thr

ACC

83207

12.7

Thr

ACA

116084

17.8

Thr

ACG

52045

8.0

Total

Ala

GCU

138358

21.2

Ala

GCC

82357

12.6

Ala

GCA

105910

16.2

Ala

GCG

40358

6.2

Total

Tyr

UAU

122728

18.8

Tyr

UAC

96596

14.8

Total

His

CAU

89007

13.6

His

CAC

50785

7.8

Total

Gln

CAA

178251

27.3

Gln

CAG

79121

12.1

Total

Asn

AAU

233124

35.7

Asn

AAC

162199

24.8

Total

Lys

AAA

273618

41.9

Lys

AAG

201361

30.8

Total

Asp

GAU

245641

37.6

Asp

GAC

132048

20.2

Total

Glu

GAA

297944

45.6

Glu

GAG

125717

19.2

Total

Cys

UGU

52903

8.1

Cys

UGC

31095

4.8

Total

Trp

UGG

67789

10.4

Total

Arg

CGU

41791

6.4

Arg

CGC

16993

2.6

Arg

CGA

19562

3.0

Arg

CGG

11351

1.7

Arg

AGA

139081

21.3

Arg

AGG

60289

9.2

Total

Gly

GGU

156109

23.9

Gly

GGC

63903

9.8

Gly

GGA

71216

10.9

Gly

GGG

39359

6.0

Total

Stop

UAA

6913

1.1

Stop

UAG

3312

0.5

Stop

UGA

4447

0.7

By utilizing this or similar Tables, one of ordinary skill in the art can apply the frequencies to any given polypeptide sequence, and produce a nucleic acid fragment of a codon-optimized coding region which encodes the polypeptide, but which uses codons optimal for a given species. Codon-optimized coding regions can be designed by various different methods.

In one method, a codon usage Table is used to find the single most frequent codon used for any given amino acid, and that codon is used each time that particular amino acid appears in the polypeptide sequence. For example, referring to Table 2 above, for leucine, the most frequent codon is UUG, which is used 27.2% of the time. Thus all the leucine residues in a given amino acid sequence would be assigned the codon UUG.

In another method, the actual frequencies of the codons are distributed randomly throughout the coding sequence. Thus, using this method for optimization, if a hypothetical polypeptide sequence had 100 leucine residues, referring to Table 2 for frequency of usage in the S. cerevisiae, about 5, or 5% of the leucine codons would be CUC, about 11, or 11% of the leucine codons would be CUG, about 12, or 12% of the leucine codons would be CUU, about 13, or 13% of the leucine codons would be CUA, about 26, or 26% of the leucine codons would be UUA, and about 27, or 27% of the leucine codons would be UUG.

These frequencies would be distributed randomly throughout the leucine codons in the coding region encoding the hypothetical polypeptide. As will be understood by those of ordinary skill in the art, the distribution of codons in the sequence can vary significantly using this method; however, the sequence always encodes the same polypeptide.

When using the methods above, the term “about” is used precisely to account for fractional percentages of codon frequencies for a given amino acid. As used herein, “about” is defined as one amino acid more or one amino acid less than the value given. The whole number value of amino acids is rounded up if the fractional frequency of usage is 0.50 or greater, and is rounded down if the fractional frequency of use is 0.49 or less. Using again the example of the frequency of usage of leucine in human genes for a hypothetical polypeptide having 62 leucine residues, the fractional frequency of codon usage would be calculated by multiplying 62 by the frequencies for the various codons. Thus, 7.28 percent of 62 equals 4.51 UUA codons, or “about 5,” i.e., 4, 5, or 6 UUA codons, 12.66 percent of 62 equals 7.85 UUG codons or “about 8,” i.e., 7, 8, or 9 UUG codons, 12.87 percent of 62 equals 7.98 CUU codons, or “about 8,” i.e., 7, 8, or 9 CUU codons, 19.56 percent of 62 equals 12.13 CUC codons or “about 12,” i.e., 11, 12, or 13 CUC codons, 7.00 percent of 62 equals 4.34 CUA codons or “about 4,” i.e., 3, 4, or 5 CUA codons, and 40.62 percent of 62 equals 25.19 CUG codons, or “about 25,” i.e., 24, 25, or 26 CUG codons.

Randomly assigning codons at an optimized frequency to encode a given polypeptide sequence, can be done manually by calculating codon frequencies for each amino acid, and then assigning the codons to the polypeptide sequence randomly. Additionally, various algorithms and computer software programs are readily available to those of ordinary skill in the art. For example, the “EditSeq” function in the Lasergene Package, available from DNAstar, Inc., Madison, Wis., the backtranslation function in the VectorNTl Suite, available from InforMax, Inc., Bethesda, Md., and the “backtranslate” function in the GCG-Wisconsin Package, available from Accelrys, Inc., San Diego, Calif. In addition, various resources are publicly available to codon-optimize coding region sequences, e.g., the “backtranslation” function at http://www.entelechon.com/2008/10/backtranslation-tool/ (visited Aug. 24, 2012). Constructing a rudimentary algorithm to assign codons based on a given frequency can also easily be accomplished with basic mathematical functions by one of ordinary skill in the art.

A number of options are available for synthesizing codon optimized coding regions designed by any of the methods described above, using standard and routine molecular biological manipulations well known to those of ordinary skill in the art. In one approach, a series of complementary oligonucleotide pairs of 80-90 nucleotides each in length and spanning the length of the desired sequence is synthesized by standard methods. These oligonucleotide pairs are synthesized such that upon annealing, they form double stranded fragments of 80-90 base pairs, containing cohesive ends, e.g., each oligonucleotide in the pair is synthesized to extend 3, 4, 5, 6, 7, 8, 9, 10, or more bases beyond the region that is complementary to the other oligonucleotide in the pair. The single-stranded ends of each pair of oligonucleotides are designed to anneal with the single-stranded end of another pair of oligonucleotides. The oligonucleotide pairs are allowed to anneal, and approximately five to six of these double-stranded fragments are then allowed to anneal together via the cohesive single stranded ends, and then they ligated together and cloned into a standard bacterial cloning vector, for example, a TOPO® vector available from Invitrogen Corporation, Carlsbad, Calif. The construct is then sequenced by standard methods. Several of these constructs consisting of 5 to 6 fragments of 80 to 90 base pair fragments ligated together, i.e., fragments of about 500 base pairs, are prepared, such that the entire desired sequence is represented in a series of plasmid constructs. The inserts of these plasmids are then cut with appropriate restriction enzymes and ligated together to form the final construct. The final construct is then cloned into a standard bacterial cloning vector, and sequenced. Additional methods would be immediately apparent to the skilled artisan. In addition, gene synthesis is readily available commercially.

In certain embodiments, an entire polypeptide sequence, or fragment, variant, or derivative thereof is codon optimized by any of the methods described herein. Various desired fragments, variants or derivatives are designed, and each is then codon-optimized individually. In addition, partially codon-optimized coding regions of the present invention can be designed and constructed. For example, the invention includes a nucleic acid fragment of a codon-optimized coding region encoding a polypeptide in which at least about 1%, at least about 2%, at least about 3%, at least about 4%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or 100% of the codon positions have been codon-optimized for a given species, or any range of values thereof. That is, they contain a codon that is preferentially used in the genes of a desired species, e.g., a yeast species such as Saccharomyces cerevisiae or Kluyveromyces, in place of a codon that is normally used in the native nucleic acid sequence.

In additional embodiments, a full-length polypeptide sequence is codon-optimized for a given species resulting in a codon-optimized coding region encoding the entire polypeptide, and then nucleic acid fragments of the codon-optimized coding region, which encode fragments, variants, and derivatives of the polypeptide are made from the original codon-optimized coding region. As would be well understood by those of ordinary skill in the art, if codons have been randomly assigned to the full-length coding region based on their frequency of use in a given species, nucleic acid fragments encoding fragments, variants, and derivatives would not necessarily be fully codon optimized for the given species. However, such sequences are still much closer to the codon usage of the desired species than the native codon usage. The advantage of this approach is that synthesizing codon-optimized nucleic acid fragments encoding each fragment, variant, and derivative of a given polypeptide, although routine, would be time consuming and would result in significant expense.

The codon-optimized coding regions can be, for example, versions encoding an endoglucanase, glucosidase, cellobiohydrolase, xylanase, glucanase, xylosidase, xylan esterase, arabinofuranosidase, galactosidase, cellobiose phosphorylase, cellodextrin phosphorylase, mannanase, mannosidase, xyloglucanase, endoxylanase, glucuronidase, acetylxylanesterase, arabinofuranohydrolase, swollenin, glucuronyl esterase, expansin, pectinase, feruoyl esterase, alpha-amylase, beta-amylase, glucoamylase, pullulanase, isopullulanase, alpha-glucosidase, beta-glucosidase, galactosidase, arabinase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinoxylanase, arabinosidase, arabinofuranosidase, arabinose isomerase, ribulose-5-phosphate 4-epimerase, xylose isomerase, xylulokinase, xylose reductase, xylose dehydrogenase, xylitol dehydrogenase, xylonate dehydratase, xylose transketolase, and/or xylose transaldolase as disclosed herein, or domains, fragments, variants, or derivatives thereof.

Codon optimization is carried out for a particular species by methods described herein, for example, in certain embodiments codon-optimized coding regions encoding polypeptides disclosed in the present application or domains, fragments, variants, or derivatives thereof are optimized according to yeast codon usage, e.g., Saccharomyces cerevisiae, Kluyveromyces lactis, and/or Kluyveromyces marxianus. Also provided are polynucleotides, vectors, and other expression constructs comprising codon-optimized coding regions encoding polypeptides disclosed herein, or domains, fragments, variants, or derivatives thereof, and various methods of using such polynucleotides, vectors, and other expression constructs.

In certain embodiments described herein, a codon-optimized coding region encoding a sequence disclosed herein, or domain, fragment, variant, or derivative thereof, is optimized according to codon usage in yeast (e.g., Saccharomyces cerevisiae, Kluyveromyces lactis, or Kluyveromyces marxianus). In some embodiments, the sequences are codon-optimized specifically for expression in Saccharomyces cerevisiae. Alternatively, a codon-optimized coding region encoding a sequence disclosed herein can be optimized according to codon usage in any plant, animal, or microbial species.

Vectors and Methods of Using Vectors in Host Cells

In another aspect, the present invention relates to vectors which include polynucleotides of the present invention, host cells which are genetically engineered with vectors of the invention, and the production of polypeptides of the invention by recombinant techniques.

Host cells can be genetically engineered (transduced or transformed or transfected) with vectors of the invention which can be, for example, a cloning vector or an expression vector. The vector can be, for example, in the form of a plasmid, a viral particle, or a phage. The engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants, or amplifying the genes of the present invention. The culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.

The polynucleotides of the present invention can be employed for producing polypeptides by recombinant techniques. Thus, for example, the polynucleotides can be included in any one of a variety of expression vectors for expressing a polypeptide. Such vectors include chromosomal, nonchromosomal, and synthetic DNA sequences, e.g., derivatives of SV40; bacterial plasmids; and yeast plasmids. However, any other vector can be used as long as it is replicable and viable in the host.

The appropriate DNA sequence can be inserted into the vector by a variety of procedures. In general, the DNA sequence is inserted into an appropriate restriction endonuclease site(s) by procedures known in the art. Such procedures and others are deemed to be within the scope of those skilled in the art, and include, for example, yeast mediated ligation (Shanks, R. M. Q., Caiazza, N. C., Hinsa, S. M., Toutain, C. M., & O'Toole, G. a., Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from gram-negative bacteria. Applied and environmental microbiology, 72(7), 5027-36 (2006)).

The DNA sequence in the expression vector is operatively associated with an appropriate expression control sequence(s) (promoter) to direct mRNA synthesis. Representative examples of such promoters are as follows:

TABLE 3

Promoter examples.

Gene

Organism

Systematic name

Reason for use/benefits

PGK1

S. cerevisiae

YCR012W

Strong constitutive promoter

ENO1

S. cerevisiae

YGR254W

Strong constitutive promoter

TDH3

S. cerevisiae

YGR192C

Strong constitutive promoter

TDH2

S. cerevisiae

YJR009C

Strong constitutive promoter

TDH1

S. cerevisiae

YJL052W

Strong constitutive promoter

ENO2

S. cerevisiae

YHR174W

Strong constitutive promoter

GPM1

S. cerevisiae

YKL152C

Strong constitutive promoter

TPI1

S. cerevisiae

YDR050C

Strong constitutive promoter

Additionally, promoter sequences from stress and starvation response genes are useful in the present invention. In some embodiments, promoter regions from the S. cerevisiae genes GAC1, GET3, GLC7, GSH1, GSH2, HSF1, HSP12, LCB5, LRE1, LSP1, NBP2, PDC1, PIL1, PIM1, SGT2, SLG1, WHI2, WSC2, WSC3, WSC4, YAP1, YDC1, HSP104, HSP26, ENA1, MSN2, MSN4, SIP2, SIP4, SIP5, DPL1, IRS4, KOG1, PEP4, HAP4, PRB1, TAX4, ZPR1, ATG1, ATG2, ATG10, ATG11, ATG12, ATG13, ATG14, ATG15, ATG16, ATG17, ATG18, ATG19, PFK1, ADH1, HXT7, or FBA1 can be used. Any suitable promoter to drive gene expression in the host cells of the invention can be used. Additionally, the E. coli, lac, or trp, and other promoters known to control expression of genes in prokaryotic or lower eukaryotic cells can be used.

In addition, the expression vectors can contain one or more selectable marker genes to provide a phenotypic trait for selection of transformed host cells such as URA3, HIS3, LEU2, TRP1, LYS2, ADE2, dihydrofolate reductase, neomycin (G418) resistance, or zeocin resistance for eukaryotic cell culture, or tetracycline or ampicillin resistance in E. coli.

The expression vector can also contain a ribosome binding site for translation initiation, and/or a transcription terminator. The vector can also include appropriate sequences for amplifying expression, or can include additional regulatory regions.

The expression vector containing the appropriate DNA sequence as disclosed herein, as well as an appropriate promoter or control sequence, can be employed to transform an appropriate host to permit the host to express a protein.

In some embodiments, the expression vector is selected from pMU3150, pMU3151, pMU3217, pMU3218, pMU3152, pMU3153, pMU3154, pMU3155, pMU3156, pMU3157, pMU3219, pMU3158, pMU3159, pMU3220, pMU3160, pMU3221, pMU3222, pMU3161, pMU3162, pMU3163, pMU3223, pMU3164, pMU3165, pMU3224, pMU3166, pMU3167, pMU3129, pMU3168, pMU3169, pMU3170, pMU3130, pMU3131, pMU3132, pMU3133, pMU3134, pMU3135, pMU3136, pMU3171, pMU3172, pMU3173, pMU3174, pMU3175, pMU3137, pMU3138, pMU3139, pMU2981, pMU2659, pMU2877, pMU2745, pMU2746, pMU2873 and pMU2879. In some embodiments, the expression vector comprises one or more sequence selected from SEQ ID NOs:347-358, 447-489 or 577-581, or a sequence having at least about 90%, 95%, 96%, 97%, 98% or 99% identity thereof.

Thus, in certain aspects, the present invention relates to host cells containing the above-described constructs. The host cell can be a host cell as described elsewhere in the application. The host cell can be, for example, a lower eukaryotic cell, such as a yeast cell, e.g., Saccharomyces cerevisiae or Kluyveromyces, or the host cell can be a prokaryotic cell, such as a bacterial cell.

Representative examples of appropriate hosts include bacterial cells, such as E. coli, Streptomyces, Salmonella typhimurium; thermophilic or mesophilic bacteria; fungal cells, such as yeast; and plant cells. The selection of an appropriate host is deemed to be within the scope of those skilled in the art from the teachings herein.

Appropriate fungal hosts include yeast. In certain aspects of the invention, the yeast is selected from Saccharomyces cerevisiae, Kluyveromyces lactis, Schizosaccharomyces pombe, Candida albicans, Pichia pastoris, Pichia stipitis, Yarrowia lipolytica, Hansenula polymorpha, Phaffia rhodozyma, Candida utilis, Arxula adeninivorans, Debaryomyces hansenii, Debaryomyces polymorphus, Schwanniomyces occidentalis, Issatchenkia orientalis, Kluyveromyces marxianus, Blakeslea, Candida, Cryptococcus, Cunninghamella, Lipomyces, Mortierella, Mucor, Phycomces, Pythium, Rhodosporidium, Rhodotorula, Trichosporon, or Yarrowia.

Methods of Using Host Cells to Produce Ethanol or Other Fermentation Products

In another aspect, the present invention is directed to the use of host cells and co-cultures to produce ethanol or other products from a biomass feedstock comprising starch, lignocellulosic matter, hexose, and/or pentose sugars. Such methods can be accomplished, for example, by contacting a biomass feedstock with a host cell or a co-culture of the present invention, allowing the recombinant host cell to ferment the lignocellulosic material, and recovering the fermentation product. Fermentation products include, but are not limited to, products such as butanol, acetate, amino acids, and vitamins.

Numerous biomass feedstocks can be used in accordance with the present invention. Substrates for saccharolytic enzyme activity assays can be divided into two categories, soluble and insoluble, based on their solubility in water. Soluble substrates include alpha-dextrins, cellodextrins or derivatives, carboxymethyl cellulose (CMC), or hydroxyethyl cellulose (HEC). Insoluble substrates include insoluble starch, crystalline cellulose, microcrystalline cellulose (Avicel), amorphous cellulose, such as phosphoric acid swollen cellulose (PASC), dyed or fluorescent cellulose, and lignocellulosic biomass. These substrates are generally highly ordered cellulosic material, and thus are only sparingly soluble.

It will be appreciated that suitable lignocellulosic material can be any feedstock that contains soluble and/or insoluble cellulose, where the insoluble cellulose can be in a crystalline or non-crystalline form. In various embodiments, the lignocellulosic biomass comprises, for example, wood, corn, corn stover, sawdust, bark, leaves, agricultural and forestry residues, grasses such as switchgrass, ruminant digestion products, municipal wastes, paper mill effluent, newspaper, cardboard, or combinations thereof. In other embodiments, lignocellulosic material comprises insoluble cellulose, crystalline cellulose, pretreated hardwood, paper sludge, pretreated corn stover, pretreated sugar cane bagasse, pretreated corn cobs, pretreated switchgrass, pretreated municipal solid waste, pretreated distiller's dried grains, pretreated wheat straw, corn fiber, agave, or combinations thereof.

In some embodiments, the invention is directed to a method for hydrolyzing a biomass feedstock, for example, a biomass feedstock as described above, by contacting the biomass feedstock with a host cell of the invention. In some embodiments, the invention is directed to a method for hydrolyzing a biomass feedstock, for example, a biomass feedstock as described above, by contacting the feedstock with a co-culture comprising yeast cells expressing heterologous saccharolytic enzymes.

In some embodiments of the present invention, the necessity of adding external saccharolytic enzymes to the fermentation medium is reduced because cells of the invention express polypeptides of the invention.

In some embodiments, the invention is directed to a method for fermenting a biomass feedstock. Such methods can be accomplished, for example, by culturing a host cell or co-culture in a medium that contains insoluble biomass feedstock to allow saccharification and fermentation of the biomass feedstock.

In addition to the enzymes of the present invention, in some embodiments, host cells of the present invention can have further genetic modifications to make them more suitable for fermenting biomass feedstock to ethanol. For example, host cells of the present invention can express xylose isomerase and/or arabinose isomerase in order to more efficiently use pentose sugars for fermentation. In some embodiments, the xylose isomerase is from a Piromyces species. In addition to a xylose isomerase, host cells of the invention, in some embodiments, can over-express genes related to the pentose phosphate pathway. These genes include, but are not limited to transkelolase and transaldolase genes. Components of the pentose phosphate pathway are known to those skilled in the art and are useful in aiding assimilation of carbons derived from pentose sugars into fermentation processes. (See, e.g., Intl Pub. Nos. WO03/062430 and WO06/009434, and U.S. Pub. No. 2006/0234364, which are incorporated by reference herein). In some embodiments, a host cell is able to use xylose and other pentose sugars such as arabinose by incorporating the carbons from pentose sugars into fermentative pathways via the pentose phosphate pathway. The xylose-utilizing host cell heterologously expresses xylose isomerase, e.g. Piromyces sp. E2 XylA, overexpresses xylulokinase, ribulose 5-phosphate isomerase, ribulose 5-phosphate epimerase, transketolase and transaldolase, and does not express an aldose reductase such as the GRE3 gene (encoding an aldose reductase).

In some embodiments, the fermentation product is selected from ethanol, lactic acid, hydrogen, butyric acid, acetone, and butanol.

The production of ethanol can, according to the present invention, be performed at temperatures of at least about 25° C., at least about 28° C., at least about 30° C., at least about 31° C., at least about 32° C., at least about 33° C., at least about 34° C., at least about 35° C., at least about 36° C., at least about 37° C., at least about 38° C., at least about 39° C., at least about 40° C., at least about 41° C., at least about 42° C., or at least about 50° C. In some embodiments of the present invention, the thermotolerant host cell can produce ethanol from cellulose at temperatures above about 30° C., above about 31° C., above about 32° C., above about 33° C., above about 34° C., above about 35° C., above about 36° C., above about 37° C., above about 38° C., above about 39° C., above about 40° C., above about 41° C., above about 42° C., or above about 50° C. In some embodiments of the present invention, the thermotolerant host cell can produce ethanol from cellulose at temperatures from about 30° C. to about 60° C., about 30° C. to about 55° C., about 30° C. to about 50° C., about 40° C. to about 60° C., about 40° C. to about 55° C., or about 40° C. to about 50° C.

In some embodiments, methods of producing ethanol can comprise contacting a biomass feedstock with a host cell or co-culture of the invention and additionally contacting the biomass feedstock with externally produced saccharolytic enzymes. Exemplary externally produced saccharolytic enzymes are commercially available and are known to those of skill in the art and are further exemplified below.

Therefore, the invention is also directed to methods of reducing the amount of externally produced saccharolytic enzymes required to produce a given amount of ethanol from the biomass feedstock comprising contacting the saccharolytic enzyme with externally produced saccharolytic enzymes and with a host cell or co-culture of the invention. In some embodiments, the same amount of ethanol production can be achieved using at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 50%, or at least about 100% fewer externally produced saccharolytic enzymes, or any range of values thereof.

In some embodiments, the methods comprise producing ethanol at a particular rate. For example, in some embodiments, ethanol is produced at a rate of at least about 0.1 mg per hour per liter, at least about 0.25 mg per hour per liter, at least about 0.5 mg per hour per liter, at least about 0.75 mg per hour per liter, at least about 1.0 mg per hour per liter, at least about 2.0 mg per hour per liter, at least about 5.0 mg per hour per liter, at least about 10 mg per hour per liter, at least about 15 mg per hour per liter, at least about 20 mg per hour per liter, at least about 25 mg per hour per liter, at least about 30 mg per hour per liter, at least about 50 mg per hour per liter, at least about 100 mg per hour per liter, at least about 200 mg per hour per liter, at least about 500 mg per hour per liter, or any range of values thereof.

In some embodiments, the host cells of the present invention can produce ethanol at a rate of at least about 0.1 mg per hour per liter, at least about 0.25 mg per hour per liter, at least about 0.5 mg per hour per liter, at least about 0.75 mg per hour per liter, at least about 1.0 mg per hour per liter, at least about 2.0 mg per hour per liter, at least about 5.0 mg per hour per liter, at least about 10 mg per hour per liter, at least about 15 mg per hour per liter, at least about 20.0 mg per hour per liter, at least about 25 mg per hour per liter, at least about 30 mg per hour per liter, at least about 50 mg per hour per liter, at least about 100 mg per hour per liter, at least about 200 mg per hour per liter, or at least about 500 mg per hour per liter more than a control strain (lacking heterologous biomass feedstock hydrolyzing enzymes) and grown under the same conditions, or any range of values thereof. In some embodiments, the ethanol can be produced in the absence of any externally added saccharolytic enzymes and/or acid hydrolysis.

In some embodiments, the recombinant microorganism produces about 2 to about 3 times more ethanol than a wildtype, non-recombinant organism; at least about 1.5 to at least about 2 times more ethanol than a wildtype, non-recombinant organism; at least about 1.5 to at least about 5 times more ethanol than a wildtype, non-recombinant organism; at least about 1.5 to at least about 7 times more ethanol than a wildtype, non-recombinant organism; at least about 1.5 to at least about 10 times more ethanol than a wildtype, non-recombinant organism; at least about 1.5 to at least about 15 times more ethanol than a wildtype, non-recombinant organism; at least about 1.5 to at least about 20 times more ethanol than a wildtype, non-recombinant organism; at least about 1.5 to at least about 30 times more ethanol than a wildtype, non-recombinant organism; at least about 1.5 to at least about 50 times more ethanol than a wildtype, non-recombinant organism; at least about 1.5 to at least about 75 times more ethanol than a wildtype, non-recombinant organism; or at least about 1.5 to at least about 100 times more ethanol than a wildtype, non-recombinant organism.

In some embodiments, the recombinant microorganism produces at least about 0.5 g/L ethanol to at least about 2 g/L ethanol, at least about 0.5 g/L ethanol to at least about 3 g/L ethanol, at least about 0.5 g/L ethanol to at least about 5 g/L ethanol, at least about 0.5 g/L ethanol to at least about 7 g/L ethanol, at least about 0.5 g/L ethanol to at least about 10 g/L ethanol, at least about 0.5 g/L ethanol to at least about 15 g/L ethanol, at least about 0.5 g/L ethanol to at least about 20 g/L ethanol, at least about 0.5 g/L ethanol to at least about 30 g/L ethanol, at least about 0.5 g/L ethanol to at least about 40 g/L ethanol, at least about 0.5 g/L ethanol to at least about 50 g/L ethanol, at least about 0.5 g/L ethanol to at least about 75 g/L ethanol, or at least about 0.5 g/L ethanol to at least about 99 g/L ethanol per 24 hour incubation on a carbon-containing feed stock.

In some embodiments, the recombinant microorganism produces ethanol at least about 55% to at least about 75% of theoretical yield, at least about 50% to at least about 80% of theoretical yield, at least about 45% to at least about 85% of theoretical yield, at least about 40% to at least about 90% of theoretical yield, at least about 35% to at least about 95% of theoretical yield, at least about 30% to at least about 99% of theoretical yield, or at least about 25% to at least about 99% of theoretical yield.

Ethanol production can be measured using any method known in the art. For example, the quantity of ethanol in fermentation samples can be assessed using HPLC analysis. Many ethanol assay kits are commercially available that use, for example, alcohol oxidase enzyme based assays. Methods of determining ethanol production are within the scope of those skilled in the art from the teachings herein.

Synergistic Activity of Saccharolytic Enzymes

In some embodiments, the expression of two or more enzymes of the present invention results in synergistic enzymatic activity with respect to substrate digestion. For example, the presence of two distinct paralogs or orthologs containing the same enzymatic activity can significantly enhance the digestion of a substrate compared to a comparable amount of either enzyme by itself. Alternatively, synergistically acting enzymes do not need to have exactly identical chemical activity, but can still operate to liberate sugars in a capacity greater than either is capable of individually. Without wishing to be bound by a particular theory, it is thought that although the catalytic activity of the enzymes can be the same, the different characteristics of the enzymes with respect to the regions surrounding the chemical substrate as well as other differing properties of the enzymes aid in digesting the varied biomass feedstock components. In some embodiments, enzymatic synergy allows biomass feedstock digestion and fermentation to take place using reduced amounts of external saccharolytic enzymes. In some embodiments, the two or more enzymes acting synergistically are endoglucanases, glucosidases, cellobiohydrolases, xylanases, glucanases, xylosidases, xylan esterases, arabinofuranosidases, galactosidases, cellobiose phosphorylases, cellodextrin phosphorylases, mannanases, mannosidases, xyloglucanases, endoxylanases, glucuronidases, acetylxylanesterases, arabinofuranohydrolases, swollenins, glucuronyl esterases, expansins, pectinases, feruoyl esterases, alpha-amylases, beta-amylases, glucoamylases, pullulanases, isopullulanases, alpha-glucosidases, beta-glucosidases, galactosidases, arabinases, arabinoxylanases, arabinosidases, arabinofuranosidases, arabinoxylanases, arabinosidases, arabinose isomerases, ribulose-5-phosphate 4-epimerases, xylose isomerases, xylulokinases, xylose reductases, xylose dehydrogenases, xylitol dehydrogenases, xylonate dehydratases, xylose transketolases, and/or xylose transaldolases as disclosed herein. In some embodiments, the two or more enzymes acting synergistically do not have the same enzymatic activity. In other embodiments, the two or more enzymes acting synergistically have the same enzyme activity.

In other embodiments, enzymatic synergy is achieved by expressing 3, 4, 5, 6, 7, or more enzymes with the same catalytic activity.

In some embodiments, enzymatic synergy is achieved with a recombinant host cell of the invention comprising (a) a heterologous polynucleotide comprising a nucleic acid which encodes an acetylxylanesterase; (b) a heterologous polynucleotide comprising a nucleic acid which encodes a xylanase; and (c) a heterologous polynucleotide comprising a nucleic acid which encodes a xylosidase. In some embodiments, the recombinant host cell further comprises (d) a heterologous polynucleotide comprising a nucleic acid which encodes a galactosidase. In some embodiments, the recombinant host cell further comprises (e) a heterologous polynucleotide comprising a nucleic acid which encodes a mannosidase or a heterologous polynucleotide comprising a nucleic acid which encodes an alpha-glucuronidase.

Glycerol Reduction

Non-limiting examples of glycerol deletion strains are described in Int'l App. No. PCT/US2012/032443, U.S. application Ser. No. 13/696,207, U.S. Publ. No. 2012/0322078 and U.S. Provisional Appl. No. 61/728,450, which are incorporated herein by reference in their entirety.

Anaerobic growth conditions require the production of endogenous electron acceptors, such as the coenzyme nicotinamide adenine dinucleotide (NAD+). In cellular redox reactions, the NAD+/NADH couple plays a vital role as a reservoir and carrier of reducing equivalents. Ansell, R., et al., EMBO J. 16:2179-87 (1997). Cellular glycerol production, which generates an NAD+, serves as a redox valve to remove excess reducing power during anaerobic fermentation in yeast. Glycerol production is, however, an energetically wasteful process that expends ATP and results in the loss of a reduced three-carbon compound. Ansell, R., et al., EMBO J. 16:2179-87 (1997). To generate glycerol from a starting glucose molecule, glycerol 3-phosphate dehydrogenase (GPD) reduces dihydroxyacetone phosphate to glycerol 3-phosphate and glycerol 3-phosphatase (GPP) dephosphorylates glycerol 3-phosphate to glycerol. Despite being energetically wasteful, glycerol production is a necessary metabolic process for anaerobic growth as deleting GPD activity completely inhibits growth under anaerobic conditions. See Ansell, R., et al., EMBO J. 16:2179-87 (1997).

GPD is encoded by two isogenes, gpd1 and gpd2. GPD1 encodes the major isoform in anaerobically growing cells, while GPD2 is required for glycerol production in the absence of oxygen, which stimulates its expression. Pahlman, A-K., et al., J. Biol. Chem. 276:3555-3563 (2001). The first step in the conversion of dihydroxyacetone phosphate to glycerol by GPD is rate controlling. Guo, Z. P., et al., Metab. Eng. 13:49-59 (2011). GPP is also encoded by two isogenes, gpp1 and gpp2. The deletion of GPP genes arrests growth when shifted to anaerobic conditions, demonstrating that GPP is important for cellular tolerance to osmotic and anaerobic stress. See Pahlman, A-K., et al., J. Biol. Chem. 276:3555-3563 (2001).

Because glycerol is a major by-product of anaerobic production of ethanol, many efforts have been made to delete cellular production of glycerol. However, because of the reducing equivalents produced by glycerol synthesis, deletion of the glycerol synthesis pathway cannot be done without compensating for this valuable metabolic function. Attempts to delete glycerol production and engineer alternate electron acceptors have been made. Lidén, G., et al., Appl. Env. Microbiol. 62:3894-96 (1996); Medina, V. G., et al., Appl. Env. Microbiol. 76:190-195 (2010). Lidén and Medina both deleted the gpd1 and gpd2 genes and attempted to bypass glycerol formation using additional carbon sources. Lidén engineered a xylose reductase from Pichia stipitis into an S. cerevisiae gpd1/2 deletion strain. The xylose reductase activity facilitated the anaerobic growth of the glycerol-deleted strain in the presence of xylose. See Lidén, G., et al., Appl. Env. Microbiol. 62:3894-96 (1996). Medina engineered an acetylaldehyde dehydrogenase, mhpF, from E. coli into an S. cerevisiae gpd1/2 deletion strain to convert acetyl-CoA to acetaldehyde. The acetylaldehyde dehydrogenase activity facilitated the anaerobic growth of the glycerol-deletion strain in the presence of acetic acid but not in the presence of glucose as the sole source of carbon. Medina, V. G., et al., Appl. Env. Microbiol. 76:190-195 (2010); see also EP Pub. No. 2277989. Medina noted several issues with the mhpF-containing strain that needed to be addressed before implementing industrially, including significantly reduced growth and product formation rates than yeast comprising GPD1 and GPD2.

Additional attempts to redirect flux from glycerol to ethanol have included the engineering of a non-phosphorylating NADP+-dependent glyceraldehydes-3-phosphate dehydrogenase (GAPN) into yeast, either with or without the simultaneous knockout of GPD1. Bro, C., et al., Metab. Eng. 8:102-111 (2006); U.S. Patent Appl. Pub. No. US2006/0257983; Guo, Z. P., et al., Metab. Eng. 13:49-59 (2011). However, other cellular mechanisms exist to control the production and accumulation of glycerol, including glycerol exporters such as FPS1, that do not require the engineering of alternate NADP+/NADPH coupling or deletion of glycerol synthesis genes. Támas, M. J., et al., Mol. Microbiol. 31:1087-1004 (1999).

FPS1 is a channel protein located in the plasma membrane that controls the accumulation and release of glycerol in yeast osmoregulation. Null mutants of this strain accumulate large amounts of intracellular glycerol, grow much slower than wild-type, and consume the sugar substrate at a slower rate. Támas, M. J., et al., Mol. Microbiol. 31:1087-1004 (1999). Despite slower growth under anaerobic conditions, an fps1Δ strain can serve as an alternative to eliminating NAD+-dependent glycerol activity. An fps1Δ strain has reduced glycerol formation yet has a completely functional NAD+-dependent glycerol synthesis pathway. Alternatively, rather than deleting endogenous FPS1, constitutively active mutants of FPS1 or homologs from other organisms can be used to regulate glycerol synthesis while keep the NAD+-dependent glycerol activity intact. In embodiments of the invention that modulate FPS1, the recombinant host cells can still synthesize and retain glycerol and achieve improved robustness relative to strains that are unable to make glycerol.

In embodiments, one or more endogenous glycerol-producing or regulating genes are deleted to create yeast strains with altered glycerol production. In other embodiments, one or more endogenous glycerol-producing genes are downregulated to create yeast strains with altered glycerol production. In still other embodiments, one or more endogenous glycerol-regulating genes are downregulated to create yeast strains with altered glycerol production. In yet other embodiments, one or more endogenous glycerol-regulating genes are downregulated to create yeast strains with altered glycerol production. In embodiments, glycerol production in such yeast strains is downregulated in comparison with wild type yeast cell. In some embodiments, GPD1 is downregulated.

Xylose Metabolism

Xylose is a five-carbon monosaccharide that can be metabolized into useful products by a variety of organisms. There are two main pathways of xylose metabolism, each unique in the characteristic enzymes they utilize. One pathway is called the “Xylose Reductase-Xylitol Dehydrogenase” or XR-XDH pathway. Xylose reductase (XR) and xylitol dehydrogenase (XDH) are the two main enzymes used in this method of xylose degradation. XR, encoded by the XYL1 gene, is responsible for the reduction of xylose to xylitol and is aided by cofactors NADH or NADPH. Xylitol is then oxidized to xylulose by XDH, which is expressed through the XYL2 gene, and accomplished exclusively with the cofactor NAD+. Because of the varying cofactors needed in this pathway and the degree to which they are available for usage, an imbalance can result in an overproduction of xylitol byproduct and an inefficient production of desirable ethanol. Varying expression of the XR and XDH enzyme levels have been tested in the laboratory in the attempt to optimize the efficiency of the xylose metabolism pathway.

The other pathway for xylose metabolism is called the “Xylose Isomerase” (XI) pathway. Enzyme XI is responsible for direct conversion of xylose into xylulose, and does not proceed via a xylitol intermediate. Both pathways create xylulose, although the enzymes utilized are different. After production of xylulose both the XR-XDH and XI pathways proceed through the enzyme xylulokinase (XK), encoded on gene XKS 1, to further modify xylulose into xylulose-5-phosphate where it then enters the pentose phosphate pathway for further catabolism.

Studies on flux through the pentose phosphate pathway during xylose metabolism have revealed that limiting the speed of this step can be beneficial to the efficiency of fermentation to ethanol. Modifications to this flux that can improve ethanol production include (a) lowering phosphoglucose isomerase activity, (b) deleting the GND1 gene, and (c) deleting the ZWF1 gene (Jeppsson et al., Appl. Environ. Microbiol. 68:1604-09 (2002)). Since the pentose phosphate pathway produces additional NADPH during metabolism, limiting this step will help to correct the already evident imbalance between NAD(P)H and NAD+ cofactors and reduce xylitol byproduct. Another experiment comparing the two xylose metabolizing pathways revealed that the XI pathway was best able to metabolize xylose to produce the greatest ethanol yield, while the XR-XDH pathway reached a much faster rate of ethanol production (Karhumaa et al., Microb Cell Fact. 6:5 (2007)). See also Int'l Pub. No. WO2006/009434, incorporated herein by reference in its entirety.

In some embodiments, the recombinant microorganisms of the invention have the ability to metabolize xylose using one or more of the above enzymes.

In some embodiments, at least about 10%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 99%, or 100% of xylo-oligomers in the lignocellulosic material are hydrolyzed to monomeric form during fermentation by the host cell, or any range of values thereof. In some embodiments, at least about 10% to at least about 50%, at least about 20% to at least about 50%, at least about 20% to at least about 60%, at least about 20% to at least about 70%, at least about 20% to at least about 80%, at least about 20% to at least about 90%, or at least about 20% to at least about 99% of xylo-oligomers in the lignocellulosic material are hydrolyzed to monomeric form during fermentation by the host cell.

In some embodiments, the host cell has a specific growth rate (h−1) of at least about 0.01, at least about 0.02, at least about 0.03, at least about 0.04, at least about 0.05, at least about 0.06, at least about 0.07, at least about 0.08, at least about 0.09, at least about 0.1, at least about 0.15, at least about 0.2, at least about 0.25, at least about 0.3, at least about 0.35, at least about 0.4, at least about 0.45, at least about 0.5, at least about 0.55, at least about 0.6, at least about 0.65, or at least about 0.7 in a culture medium containing xylose as the primary sugar source, or any range of values thereof. In some embodiments, the host cell has a specific growth rate (h−1) of at least about 0.01 to at least about 0.7, at least about 0.05 to at least about 0.7, at least about 0.1 to at least about 0.7, at least about 0.01 to at least about 0.5, at least about 0.05 to at least about 0.5, at least about 0.1 to at least about 0.5, at least about 0.01 to at least about 0.4, at least about 0.05 to at least about 0.4, or at least about 0.1 to at least about 0.4 in a culture medium containing xylose as the primary sugar source.

In some embodiments, a composition of the invention has the ability to metabolize xylose using one or more of the above enzymes.

In some embodiments, the xylose is fermented in about 48 hours or less, about 40 hours or less, about 24 hours or less, or any range of values thereof.

In some embodiments, the xylose in the culture medium is at an initial concentration of at least about 10 g/L, at least about 20 g/L, at least about 30 g/L, at least about 50 g/L, at least about 60 g/L, at least about 70 g/L, or any range of values thereof.

The following embodiments of the invention will now be described in more detail by way of these non-limiting Examples.

EXAMPLES

Example 1

Creation of M3799 and M3059, Robust and Efficient Xylose Utilizing S. cerevisiae Strains

Strain M2874, which is a xylose utilizing derivative of the robust S. cerevisiae strain M2390, described in U.S. Appl. No. 61/557,971, filed Nov. 10, 2011 and Int'l Appl. No. PCT/US2012/064457, filed Nov. 9, 2012, which are incorporated herein by reference, was subjected to adaptation to improve its performance on concentrated C5 containing liquors derived from hardwood. To accomplish this, the strain was subjected to two forms of continuous culture (chemostat and pH auxostat), with results as depicted in FIG. 2.

C5 containing liquor was derived by pretreating hardwood chips at a severity of 3.8, washing the soluble sugars derived in that process out of the solids, hydrolyzing them with 0.5% H2SO4 in a laboratory autoclave at 121° C. for 3 hours, and adjusting pH to 5.8 using 15M NH4OH. This liquor was diluted to 15% of its original concentration, mixed with medium components (Yeast Nitrogen Base, 6.5 g/L) and fed to a pH controlled bioreactor of constant volume at a constant rate to achieve a dilution rate of 0.05 hr−1. After approximately 400 hours of adaptation at this condition, a second feed tank containing liquor at 100% strength and YNB media components, was connected to the bioreactor via the pump typically used to control pH. The pH setpoint was adjusted to 5.2. As the culture grew on the liquor fed from tank 1, the pH was decreased due to the cellular metabolism and the pH control loop was triggered. At this point, additional liquor from feed tank 2 (pH 5.8) was fed to the bioreactor until the pH was restored to the setpoint. This pH auxostat was allowed to run for a further 400 hours, self-adjusting to an ever increasing growth rate achieved by the culture. Single colonies, including one named M3799, were isolated on YPX media and saved at −80° C. from the end of the selection experiment to compare against the parental strain, M2874, and other benchmark strains.

The parental strain M2874, one of the isolated adapted colonies, M3799, and a benchmark strain, and M2108 (described in Int'l Pub. No. WO2011/140386, which is incorporated herein by reference) were compared for their ability to grow on hardwood derived C5 liquors. These comparisons were done by first hydrolyzing the liquor to monomer sugars using a subset of the enzymes described below (FC7, FC36 and FC143), and then loading them at starting concentrations of ˜35 g/L and 48 g/L of xylose in small batch fermentations carried out in nitrogen flushed bottles. Strains were inoculated at 0.5 g/L starting concentration and the media components added were 0.5 g/L DAP and 12 g/L CSL. M3799 outperformed the other strains tested in terms of rate of fermentation. Data for the 48 g/L cultures is shown in FIG. 3, and from this data it can be seen that M3799 can complete the fermentation of xylose to ethanol in this toxic environment in approximately 40 hours, while the other strains fermented only a small fraction of the xylose by this timepoint.

Adaptation was also carried out on strain M2433 (described in Int'l Pub. No. WO2011/140386) against hardwood derived C5 oligomers. In this case, a chemostat was run for ˜1,000 hours with C5 liquor being fed at a constant rate to a growing culture of M2433. After maintaining this culture for 1,000 hours, colonies were isolated and tested relative to the parental strain M2433. FIG. 4 shows the comparison of the colony isolate, M3059, against M2433 in small batch fermentations at a variety of sugar (and subsequently inhibitor) concentrations. At concentrations of sugar at and above 30 g/L, M3059 is superior in ability to produce ethanol as compared to M2433. These fermentations were inoculated with 0.1 g/L cell dry weight, pH was set with NH4OH and maintained with calcium carbonate (5 g/L), media was yeast nitrogen base without ammonium sulfate (1.7 g/L), and temperature was maintained at 35° C.

Saccharomyces cerevisiae strain M3799, an adapted strain that utilizes xylose and generated by the methods described in Example 1, was deposited with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, Va., 20110 on Aug. 30, 2012, and assigned ATCC Accession No. PTA-13180.

Example 2

Characterizing the Expression and Activity of Auxiliary Cellulases

The soluble oligomers extracted from hardwood after pretreatment are comprised of a variety of sugars linked in a variety of ways. The linkages require different types of enzymes to hydrolyze them to their component monomer sugars. FIG. 5 presents several of the oligomers hypothesized to be present in hardwood derived soluble oligomers based on examining the literature related to the composition of hardwood (e.g. Wilfor (2005) Wood Sci Tech; Teleman (2003) Carbohydrate Res; Shallom (2003) Curr Op Biotech; Spanikova (2006) FEBS Letters; Rowell, R M. Handbook of Wood Chemistry and Composites. London: Taylor & Francis (2005)), as well as the general enzyme types that are expected to hydrolyze these types of bonds.

Oligomers of the form extracted, particularly xylo-oligomers, are notable as potent inhibitors of cellulase enzymes during hydrolysis of cellulose (Qing, Q., Yang, B., Wyman, C. E. Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresource Technol. 101:9624-9630 (2010)), and hydrolysis of such oligomers using additional enzymes is known to improve conversion of lignocellulosic substrates (Qing, Q., Wyman, C. E. Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover. Biotechnology for Biofuels, 4:18 (2011)). In addition, commercial enzyme preparations tested are poor at hydrolyzing these oligomers (FIG. 6), in many cases hydrolyzing only a small percentage of the available xylo-oligomers. Therefore, a set of enzymes was developed that could be expressed in S. cerevisiae for the purpose of hydrolyzing these materials to near completion.

A set of enzymes, including some previously identified (U.S. Appl. No. 61/420,142 and Intl Pub. No. WO2011/153516), which are incorporated herein by reference) as being functionally expressed in S. cerevisiae, and some newly synthesized candidates which were subsequently tested for expression, was developed as a basis for creating a highly efficient enzyme system to hydrolyze oligomeric C5 liquor. The enzymes tested are in Table 4. FC93 through FC137 with a common tag attached to the C-terminus for purification were inserted into the expression vector pMU1531 (described in U.S. Appl. No. 61/420,142 and Int'l Pub. No. WO2011/153516). FC139 and FC142 were tagged, and all three were inserted into S. cerevisiae expression vector pMU1531.

TABLE 4

List of enzymes tested for hydrolysis of hardwood derived oligomers.

Fungal

Cellulase

Enzyme

(FC)#

type

Activity

Organism

Accession #

Strain #

Plasmid #

7

CE1

acetylxylanesterase

Neosartorya fischeri

XP_001262186

M1514

pMU1934

15

CIP2

glucuronyl esterase

Trichoderma reesei

AAP57749

M1482

pMU1891

16

CIP2

glucuronyl esterase

Chaetomium globosum

XP_001226041

M1474

pMU1879

26

GH12A

Endoglucanase

Neosartorya fischeri

XP_001261563

M1378

pMU1789

(EG3)

36

GH43

beta-xylosidase, HIS

Pyrenophora tritici-

XP_001940956

M1834

pMU2173

tagged

repentis

37

GH45A

Endoglucanase

Chrysosporium

ACH15008

M1395

pMU1750

(EG5)

lucknowense

41

GH5

Endoglucanase

Hypocrea jecorina

P07982,

M1138

pMU1400

(EG2)

AAA34213.1

56

GH6

Endoglucanase

Neurospera crassa

XP_957415

M1400

pMU1755

(EG6)

61

GH61A

Endoglucanase

Thielavia terrestris

ACE10231

M1418

pMU1779

(EG4)

72

GH7B

Endoglucanase

Aspergillus fumigatus

XP_747897

M1311

pMU1626

(EG1)

88

GH5/GH2

endo-β-mannanase/

Aspergillus aculeatus

AAA67426

M1867,

pMU1903

mannosidase

M2240

93

GH27 and

α-galactosidase

Aspergillus niger

CAB46229

M3444

pMU3150

GH31

94

GH31

α-galactosidase

Talaromyces stipitatus

XP_002486571

pMU3151

95

GH27 and

α-galactosidase

Aspergillus niger

CAK43504

pMU3217

GH31

96

GH31

α-galactosidase

Metarhizium acridum

EFY88353

pMU3218

CQMa 102

97

GH31

α-galactosidase

Aspergillus niger

Q9UUZ4.1

M3445

pMU3152

98

GH31

α-galactosidase

Pyrenophora teres f.

XP_003296100.1

M3446

pMU3153

teres 0-1

99

GH27 and

α-galactosidase

Talaromyces emersonii

ABU94728.1

M3447

pMU3154

GH31

A7XZT2

100

GH27 and

α-galactosidase

Aspergillus niger

CAA44950

pMU3155

GH31

101

GH67

α-glucuronidase

Chaetomium globosum

XP_001227924

pMU3156

102

GH67

α-glucuronidase

Neosartorya fischeri

XP_001259234

pMU3157

103

GH67

α-glucuronidase

Talaromyces emersonii

AAL33576

pMU3219

104

GH67

α-glucuronidase

Aspergillus fumigatus

XP_753219

pMU3158

105

GH67

α-glucuronidase

Pyrenophora tritici-

XP_001933491

pMU3159

repentis

106

GH115

α-glucuronidase

Aspergillus oryzae

BAE56806

M3511

pMU3220

107

GH115

α-glucuronidase

Schizophyllum

ADV52250

M3448

pMU3160

commune

108

GH115

α-glucuronidase

Neurospora crassa

EAA30769

pMU3221

109

GH115

α-glucuronidase

Fusarium

AAO27748

pMU3222

sporotrichioides

110

GH115

α-glucuronidase

Aspergillus fumigatus

XP_749042

M3449

pMU3161

111

GH115

α-glucuronidase

Aspergillus nidulans

EAA66396

pMU3162

112

GH2

β-mannosidase

Scheffersomyces stipitis

XP_001386988

pMU3163

113

GH2

β-mannosidase

Aspergillus clavatus

XP_001268088

pMU3223

114

GH2

β-mannosidase

Debaryomyces hansenii

CAG87955

M3450

pMU3164

115

GH2

β-mannosidase

Aspergillus nidulans

ABF50864

pMU3165

116

GH2

β-mannosidase

Pyrenophora tritici-

XP_001940689

pMU3224

repentis

117

GH26

β-mannanase

Humicola insolens

AAQ31840

M3451

pMU3166

118

GH26

β-mannanase

Chaetomium globosum

XP_001220544

M3452

pMU3167

119

GH26

β-mannanase

Aspergillus niger

XP_001397297

M3316

pMU3129

120

GH26

β-mannanase

Chaetomium

EGS22650

M3453

pMU3168

thermophilum

121

GH26

β-mannanase

Podspora anserina

XP_001904129

M3454

pMU3169

122

GH5/GH2

endo-β-mannanase/

Aspergillus fumigatus

EAL85463

M3455

pMU3170

mannosidase

123

GH5/GH2

endo-β-mannanase/

Aspergillus niger

ACJ06979

M3317

pMU3130

mannosidase

124

GH5/GH2

endo-β-mannanase/

Neosartorya fischeri

XP_001262744

M3318

pMU3131

mannosidase

125

GH5/GH2

endo-β-mannanase/

Chaetomium globosum

XP_001223421

M3319

pMU3132

mannosidase

126

GH5/GH2

endo-β-mannanase/

Aspergillus nidulans

Q5B833

M3320

pMU3133

mannosidase

127

GH113

β-mannanase

Tetrahymena

EAR94190

M3321

pMU3134

thermophilum

128

GH113

β-mannanase

Polysphondylium

EFA85383

M3322

pMU3135

pallidum

129

GH113

β-mannanase

Dictyostelium

EGG23732

M3323

pMU3136

fasciculatum

130

GH1

β-mannosidase/β-

Arabidopsis thaliana

AAM61427

pMU3171

glucosidase

131

GH1

β-mannosidase/β-

Hordeum vulgare

ACF07998

pMU3172

glucosidase

132

GH1

β-mannosidase/β-

Oncidium Gower

ABC55717

pMU3173

glucosidase

Ramsey

133

GH1

β-mannosidase/β-

Zea Mays

ACL52625

pMU3174

glucosidase

134

GH1

β-mannosidase/β-

Oryza sativa

NP_001043156

pMU3175

glucosidase

135

CE16

Acetyl esterase

Trichoderma reesei

ABI34466

M3324

pMU3137

136

CE16

Acetyl esterase

Aspergillus fumigatus

XP_749200

M3325

pMU3138

137

CE16

Acetyl esterase

Chaetomium globosum

XP_001223141

M3326

pMU3139

138

GH10

Endo-xylanase

Aspergillus niger

CAA03655.1

M3441

pMU2816

139

GH31

α-galactosidase

Trichoderma reesei

Z69253

M2665

pMU2981

140

GH3

β-glucosidase

Saccharomycopsis

P22506

pMU2301

fibuligera

141

GH3

β-glucosidase, HIS

Saccharomycopsis

P22506

M1429

pMU1172

tagged

fibuligera

142

GH5/GH2

β-mannase

Trichoderma reesei

L25310

M2351

pMU2659

143

GH11

Xylanase

Aspergillus niger

AAS46914.1

M3136

pMU2543

(SE32)

144

CE1

acetylxylanesterase

Trichoderma reesei

Q99034

M1782

pMU2083

(SE66)

145

GH67

α-glucuronidase

Pichia stipitus

XP_001385930

pMU2866

The plasmids described in Table 4 were transformed into the yeast strain M1744 (described in U.S. Appl. No. 61/420,142 and Int'l Pub. No. WO 2011/153516), and selected on synthetic complete media without uracil (SD-ura) in order to isolate transformants. These transformants were then screened for activity using and appropriate activity assay (see Table 5 and protocols below) to assess if functional protein was being produced. In cases where no activity could be measured, or an assay was not available, western blots were used to assess if protein was being produced. Enzymes that showed the best activity, or the most protein produced as assessed via western blot were subsequently purified and used in hydrolysis assays with C5 liquor. The hydrolysis assay contains diluted C5 liquor, Na-citrate buffered to pH 5.2, purified enzyme and sodium azide to prevent contamination. The resultant sugars were analyzed by BioRad Aminex 87H and 87P HPLC to determine the usefulness of each enzyme. The 87H column can measure acetic acid, but also results in xylose, galactose, and mannose co-eluting, while the 87P column can resolve xylose, galactose, and mannose, but cannot measure acetic acid release. For this reason, both columns were employed to analyze the release of sugars.

The combination of FC7, FC138, FC36 and FC16 (termed as Fav4 below) show good hydrolysis relative to the individual enzymes of the combination of FC36 and FC138, yielding hydrolysis.

TABLE 5

Assays used to test candidates for each activity type.

Enzyme Type

Assay Used

Acetylxylanesterase

pNP acetate

Glucuronyl esterase

washate assay

Endoglucanase (EG3)

CMC

β-xylosidase, HIS tagged

pNP-xylobioside

Endoglucanase (EG5)

CMC

Endoglucanase (EG2)

CMC

Endoglucanase (EG6)

CMC

Endoglucanase (EG4)

CMC

Endoglucanase (EG1)

CMC

endo-β-mannanase/

AZCL mannan plates and

mannosidase

liquid

α-galactosidase

pNP galactopyranoside

α-glucuronidase

Megazyme kit (Product No:

K-AGLUA)

β-mannosidase

AZCL mannan plates and

liquid

β-mannanase

AZCL mannan plates and

liquid

β-mannosidase/β-

AZCL mannan plates and

glucosidase

liquid

Acetyl esterase

pNP acetate and washate

Endo-xylanase

birchwood xylan hydrolysis

β-glucosidase, HIS tagged

pNP glucopyranoside,

MuCell and cellobiose

digestion

Acid Hydrolysis, Activity Assays, and Western Blot Protocols

Acid Hydrolysis

Acid hydrolysis of oligomers was carried out according to the standard NREL Laboratory Analytical Procedure (LAP) contained in technical report NREL/TP-510-42623.

Assay Protocols for Following Activities

Manufacturer,

Activity

Substrate

Product #

α -galactosidase

4-nitrophenyl-α-

Sigma, N0877

galactopyranoside

β-mannosidase

4-nitrophenyl-β-

Biosynth, N4550

mannopyranoside

β -mannanase

AZCL-galactomannan

Megazyme,

I-AZGMA

β -glucosidase

4-nitrophenyl-β-

Sigma, N7006

glucopyranoside

α-

4-nitrophenyl-α-L-

Sigma, N3641

arabinofuranosidases

arabinofuranoside

Acetylxylanesterases

4-nitrophenyl acetate

Sigma, N8130

Procedures

  • 1. Make up Solutions
    • a. 200 mM 4np-galactopyranoside in DMSO
    • b. 200 mM 4np-mannopyranoside in DMSO
    • c. 1% AZCL-galactomannan in 50 mM Na Acetate buffer, pH5
    • d. 200 mM 4np-glucopyranoside in DMSO
    • e. 200 mM 4np-α-L-arabinofuranoside in DMSO
    • f. 200 mM 4-np-acetate in DMSO
  • 2. Pellet cells grown in 48 well plate by centrifugation.
  • 3. Dilute the substrates with a 4-nitrophenyl group from above to 2 mM in 50 mM Na Ac pH5, except for those in 1e and 1f, dilute these to 1 mM in 50 mM citrate buffer pH 5.0
  • 4. Set up and run assays in a clear bottom 96 well plate as follows:

    α-galactosidase

  • Add: 50 ul 2 mM 4np-α-galactopyranoside
  • Add: 50 ul supernatant from cells
  • Incubate: 35 C for 1 h
  • Stop reaction: 50 ul 1M NaHCO3
  • Read in 96 well plate reader @ 405 nm

    β-mannosidase

  • Add: 50 ul 4np-β-mannopyranoside
  • Add: 50 ul supernatant from cells
  • Incubate: 35 C for 1 h
  • Stop reaction: 50 ul 1M NaHCO3
  • Read in 96 well plate reader @ 405 nm

    β-mannanase

  • Add: 100 ul 1% AZCL-galactomannan
  • Add: 100 ul supernatant from cells
  • Incubate: 35 C, mixing at 900 rpm for 1 h
  • Dilute: with 100 ul 50 mM Na Ac pH5
  • Mix: 2000 rpm×2 min
  • Transfer: 50 ul to clear bottom plate
  • Read in 96 well plate reader @ 590 nm

    β-glucosidase

  • Add: 50 ul 4np-β-glucopyranoside
  • Add: 50 ul supernatant from cells
  • Incubate: 35 C for 1 h
  • Stop reaction: 50 ul 1M NaHCO3
  • Read in 96 well plate reader @ 405 nm

    α-arabinofuranosidases

  • Add: 100 ul 4np-α-L-arabinofuranoside solution
  • Add: 50 ul supernatant from cells
  • Incubate: 35 C for 2 h
  • Add: 10 uL of 1M Tris HCL buffer, pH 7.5
  • Read in 96 well plate reader @ 410 nm

    Acetylxylanesterases

  • Add: 100 ul 4np-acetate solution
  • Add: 50 ul supernatant from cells
  • Incubate: 35 C for 2 h
  • Add: 10 uL of 1M Tris HCL buffer, pH 7.5
  • Read in 96 well plate reader @ 410 nm

    Carboxymethylcellulose (CMC) Conversion Assay Procedure

    • 1. Inoculate strains to be tested in 10 mL YPD (or other media) in 50 ml tubes and grow with shaking for 3 days.
    • 2. Prepare the 1.14% CMC substrate, 1.14 g CMC per 100 mL citrate buffer (50 mM pH 5.5) autoclaved for 20-25 min. Agitate to make sure all CMC is dissolved.
    • 3. To 44 mL of 1.14% CMC add 1 mL of 0.5% of sodium azide.
    • 4. Spin cells in 50 ml tubes at max speed for 10 min
    • 5. Add CMC and azide mixture from step 3 to deep well 96-well plate, 450 μL/well.
    • 6. Do 4 replicates for each strain.
    • 7. Aliquot 100 μL of DNS into 96-well PCR plate
    • 8. Add 50 μL of yeast supernatant or 50 mM citrate buffer pH 5.5 to the substrate and mix by pipetting
    • 9. Take T=0 sample (time=0): transfer 50 μL of the reaction mixture from step 8 to the 96-well PCR plate containing DNS and mix
    • 10. Put the deep well plate at 35° C. 800 rpm
    • 11. Heat the PCR plate at 99° C. for 5 min and cool down to 4° C. in PCR machine
    • 12. Transfer 50 μL from the PCR plate to a microtiter plate.
    • 13. Measure absorbance at 565 nm
    • 14. Take samples from reaction plate after 24 hours and repeat steps 6-12
    • 15. Calculate % of CMC converted at time 24 hrs using formula:

The percentage of the CMC converted at time 24 hrs. can be calculated using formula:

Y

=

(

OD

(

T

=

24

)

-

OD

(

T

=

)

)

×

100

%

S

×

A

=

Δ

OD

×

100

-

0.1

×

10

=

Δ

OD

×

100

Y—% of CMC converted at 24

S—DNS/glucose calibration slope (approximately 0.1)A—CMC concentration at T=0 that is 10 g/L for 1% CMC

Reagents:

Dinitrosalicylic Acid Reagent Solution (DNS), 1%

(Could be stored at 4° C. for several months)

  • 3,5-dinitrosalicylic acid: 10 g
  • Sodium sulfite: 0.5 g
  • Sodium hydroxide: 10 g
  • Add water to: 1 liter
  • Calibrate DNS by glucose (use glucose samples with conc. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 g/l, calculate the slope [S])

    MU-Cellobioside Assay

    • 1. Grow cells in 600 ul YPD in 96 well plates at 35° C. overnight
    • 2. Dilute cell supernatants 3-9 times in the 50 mM Citrate Buffer buffer pH 5.5
    • 3. Make 4 mM Mu-Cellobioside in the 50 mM Citrate Buffer pH 5.5 (0.01 g/5 ml per 96 wp)
    • 4. Distribute 50 ul of substrate into each well of a microtiter 96 well plate
    • 5. add 50 ul of diluted yeast supernatants to each well
    • 6. incubate at 37° C. for 15 min
    • 7. add 100 μl of 1 M Na2CO3 to each well to stop the reaction
    • 8. read the fluorescence in microtiter plate reader (ex. 355 nm and em. 460 nm)

      Determination of Xylanase Activity (Bailey M. J., Biely P., Poutanen K., Interlaboratory Testing of methods for assay of xylanase activity. J Biotechnol 23:257-270 (1992)).

    • 1. Centrifuge a small sample of cell culture at >5K for 2 min, or enough to pellet cells, and use supernatant for assays.
    • 2. Prepare and treat xylanase assay reaction mixtures as follows:

TABLE 6

Step

Xylanase assay

(amt)

Enzyme blank

(amt)

Reagent blank

(amt)

1

Substrate

450 ul

Substrate

450 ul

Substrate

450 ul

2

Temperate to 50° C.

None

None

3

Enzyme* (mix)

 50 ul

Incubate at 50° C.

Incubate at 50° C. for

for 5 min

5 min

4

Incubate at 50° C.

Add DNS

750 ul

Add DNS

750 ul

for 5 min

5

Add DNS

750 ul

Add Enzyme*

 50 ul

Add Buffer

 50 ul

6

Mix

Mix

Mix

7

Boil for 15 min.

Boil for 15 min.

Boil for 15 min.

8

Cool in cold water.

Cool in cold

Cool in cold water.

water.

9

Measure color at

Measure color at

Measure color at

540 nm

540 nm.

540 nm.

10

Zero spec.

*Diluted appropriately with citrate buffer.

Preparation of Solutions

TABLE 7

DNS Solution

DNS solution (Miller G. L.. Use of

dinitrosalicylic acid reagent for

determination of reducing sugar.

Anal. Chem. 31: 426-428 (1959).)

Amount

2-Hydroxy-3,5-dinitrobenzoate

10.0

g

Potassium-sodium-tartrate

200.0

g

NaOH

10.0

g

Phenol

2.0

g

Na-sulfite

0.5

g

dH2O (make up to)

1000.0

ml

TABLE 8

Citrate Buffer

Citrate Buffer (0.05M pH 5)

1 L

0.1M Citric acid:

21.01 g citric acid in 1000 ml H2O

0.1M Sodium citrate:

29.41 g of C6H5O7Na3•2H2O in

1000 ml H2O

Combine: 20.5 ml of citric acid + 29.5 ml of sodium citrate, add dH2O to

a total of 100 ml, adjust pH with NaOH, or HCL as necessary.

TABLE 9

Substrate solution

Substrate solution

1.0% Birchwood 4-O-methyl glucuronoxylan (Sigma) in 0.05M Na-citrate

buffer, pH 5. 1.0 g was homogenized in 80 ml buffer at 60° C. and

heated to its boiling point using a magnetic stirrer. The solution was

cooled with continued stirring and covered and stirred slowly overnight.

The solution was brought up to 100 ml with buffer, and can be stored at

4° C. for a maximum of 1 week or frozen in aliquots of e.g. 25 ml at −20°

C. The solution should be mixed well after thawing.

TABLE 10

Xylose standard

Xylose standard

The standard is pure xylose, stock solution 0.01M (0.15 g per 100

ml buffer). Stock solution can be stored in aliquots at −20° C.

TABLE 11

Multiple Timepoints 96 Well format for Xylanase Assay.

450 μl (1% 4-O-methyl

glucuronoxylan substrate

Substrate

solution described above)

The substrate was incubated for 5 min at 45° C.

50 μl

Enzyme containing the culture supernatant was

added

The solution was incubated at 35° C.

Samples were removed at 0 h, 2.5 h and 24 h -

25 μl

PCR plate.

DNS was added

50 μl

Xylose standard (reagent blank with citrate

10 μl (to standard wells

buffer)

or citrate to blank wells)

The samples were heated to 99° C. for 15 min

The plate was cooled in and ice bucket.

100 μl was transferred. to 96 well round

bottom plate

OD540 was measured in a plate reader.

Western Blot Protocol for Supernatants of Strains:

    • 1. Take top performing strains for activity, along with randomly selected α-glucuronidase strains (no activity assay available) and run on a 4-20% Tris glycine SDS-PAGE gel (Invitrogen, EC6025BOX), transfer to PVDF membrane (Amersham Hybond P, GE Healthcare, RPN303F) and block overnight in TBS (10 mM Tris, 150 mM NaCl, pH 7.5)+2% BSA (bovine serum albumin)
    • 2. Dilute primary Qiagen muα Penta-His 1:5000 in TBST (TBS with 0.1% Tween 20). Pour off blocker and add primary antibody. Incubate at room temperature for 1 h.
    • 3. Pour off primary antibody and wash 3×5 min in THST (10 mM Tris, 500 mM NaCl, pH 7.5 with 0.1% Tween 20).
    • 4. Dilute Thermo gtαmu-HRP (cat. No. 31439) 1:7500 in TBST and add to blots. Incubate at room temperature for 1 h, pour off and wash again with THST
    • 5. Add ECL (Thermo, 32166) substrate and visualize using a Syngene G:BOX with a CCD camera.

FIG. 7 depicts the hydrolysis of hardwood derived C5 liquor by individual yeast produced purified enzymes as well combinations, including an acetylxylanesterase, a beta-xylosidase, an endo-xylanase, and a glucuronyl esterase. This test shows that individual enzymes and combinations of two enzymes do not produce significant oligomer hydrolysis (i.e., <15% of the starting oligomers were hydrolyzed by these single enzymes and combinations. In contrast, the combination of FC7, FC138, FC36, and FC16 (termed as Fav4 below) show good hydrolysis, achieving >80% hydrolysis of the substituted xylo-oligomers present.

FIG. 8 depicts attempts to increase hydrolysis by testing several endoglucanase types as well as β-glucosidase. Increases in glucose release are evident when β-glucosidase (FC140), EG1 (FC72), and EG3 (FC26) were added to the reaction. In FIG. 9, when both FC140 and FC72 were added to the Fav4 together, the best performance was realized. This combination of FC7, FC138, FC36, FC16, FC140, and FC72 was termed the “Fav6.” FIG. 10 shows the result of adding several additional enzymes to the Fav6. The best hydrolysis occurred when a functional α-galactosidase was added (FC139). FIGS. 11 and 12 give the results for additional screening of enzymes in conjunction with the Fav6. FIG. 11 shows the release of minor component sugars from data generated using the BioRad Aminex 87p HPLC column. From these data, it is clear that while several of the added enzymes release additional mannose, the endo-β-mannanase/mannosidase from N. fischeri (FC124) resulted in the highest release of mannose. FIG. 12 confirms that the addition of FC139 results in the highest total xylose and glucose release as determined by the BioRad Aminex 87H HPLC column. FIG. 13 depicts the effect of the combination of the enzymes with respect to acetic acid release from C5 oligomers, which gives an idea of which enzymes are important for releasing more of this important substituent from the xylan backbone. With the increasing number of enzymes previously shown to be beneficial added, more acetic acid was released. In addition, an α-glucuronidase enzyme (FC106) was shown to improve the removal of acetyl groups from the backbone.

FIGS. 14-16 depict data from a subsequent screen where a different set of purified enzymes was tested in conjunction with the Fav6. FIG. 14 shows the release of minor component sugars (as measured on the 87P column). FIG. 15 shows the release of xylose (as measured on the 87P column). FIG. 16 shows the release of xylose and glucose on the 87H column capturing all the components. From these data, it appears that FC122, an endo-β-mannanase/mannosidase, releases significant mannose, but not as much as FC124, while FC106, an β-glucuronidase appears to be important for the release of xylose, as well as the release of total sugars.

From the data combined generated during screening, it was determined that the following enzymes was useful for hydrolyzing C5 liquors: FC7, FC138, FC36, FC16, FC140, FC72, FC88, FC139, FC124, and FC106.

Several additional experiments were carried out to determine if the ratio of enzymes loaded into the reaction, or the order of enzymes loaded into the reaction was important. FIG. 17 demonstrates that the addition of single and combinations of esterases targeting the removal of acidic groups prior to the addition of the other enzymes for hydrolysis of the oligomers can lead to a slightly increased overall hydrolysis yield. With respect to the testing of ratios shown in FIG. 18, the largest effect on yield appeared to be from enriching FC36, the β-xylosidase. Data from this experiment is also shown in FIG. 19 for the release of xylose in the first 24 hours of hydrolysis. These data show that enriching for FC36 results in the fastest release of xylose in the reaction, with an increase of 50% in the rate when the amount of FC36 is raised from 10% of the total enzyme loaded to 30%. Testing from this point on used a higher proportion of FC36 in the mix of enzymes. FIG. 20 depicts data from the same assay carried out in FIG. 18, but the data shown was generated using the BioRad Aminex 87P HPLC column to examine the minor sugar components.

TABLE 12

Amounts of enzymes used in testing various ratios of enzymes

targeting the hydrolysis of C5 liquors. For each mix (1

to 11), the total amount of enzyme loaded is 2 mg of enzyme

per gram of xylose loaded into the hydrolysis assay as measured

by acid hydrolysis of the starting material.

mg EP/g xylose

to-

FC138

FC36

FC7

FC16

FC140

FC72

C139

FC142

tal

1

0.25

0.25

0.25

0.25

0.25

0.25

0.25

0.25

2

2

0.60

0.20

0.20

0.20

0.20

0.20

0.20

0.20

2

3

0.40

0.40

0.20

0.20

0.20

0.20

0.20

0.20

2

4

0.20

0.60

0.20

0.20

0.20

0.20

0.20

0.20

2

5

0.50

0.40

0.20

0.10

0.10

0.30

0.20

0.20

2

6

0.40

0.40

0.30

0.10

0.10

0.30

0.20

0.20

2

7

0.40

0.40

0.20

0.10

0.10

0.10

0.30

0.40

2

8

0.40

0.40

0.10

0.10

0.10

0.10

0.40

0.40

2

9

0.40

0.40

0.40

0.10

0.10

0.20

0.20

0.20

2

10

0.40

0.40

0.20

0.10

0.10

0.40

0.10

0.30

2

11

0.40

0.40

0.20

0.10

0.10

0.40

0.30

0.10

2

FIG. 21 presents data generated to test the utility of different α-glucuronidases, FC106, FC145, and FC110.

FIG. 22 depicts the results of analyzing the residuals of a fermentation of C5 liquor carried out using the strain M3222, which produces FC7, FC36, and FC138. The fermentation was stopped at 144 hours of fermentation, with no further release of xylose or production of ethanol. To understand why this was the case, the residual sugars were analyzed by HPAEC-PAD using the Dionex PA-100 column, which can separated and the presence of various forms of oligomers detected. A large peak was observed at the elution time where xylobiose typically elutes. This was unexpected, since the xylosidase, FC36, was present in the fermentation. Thus, the residuals were also subjected to hydrolysis by several combinations of enzymes, including FC136 alone, FC36 alone, and the combination of FC136 and FC36, and the resulting material was run on the Dionex. FC136, termed an “acetyl esterase” in combination with the xylosidase allowed the peak to be hydrolyzed. This indicates that the fermentation using the acetylxylanesterase (FC7), xylanase (FC138), and xylosidase (FC36) was producing, and or leaving a compound that these three enzymes could not hydrolyze, acetylated xylobiose. The acetyl group on the compound prevents hydrolysis by xylosidase, and the short nature of the oligomer prevents the acetyl group from being removed by FC7, which acts primarily on longer chain substituted xylo-oligomers.

FIG. 23 depicts the performance of an optimized 11 enzyme system on two different C5 liquors over time. It can be seen from this figure that 80% hydrolysis can be realized using a 2.5 mg/g enzyme loading in 24 hours, and as high as 95% can be realized by 72 hours at this loading.

Example 3

Creation of Strains of S. cerevisiae Engineering for Enzyme Expression and Consolidated Bioprocessing of Hardwood Derived Soluble Oligomers

As described above, a set of enzymes was discovered by screening a variety of enzyme types and several amino acid sequences for each activity type that was able to hydrolyze soluble oligomers isolated from lignocellulose very efficiently. The following set of enzymes that was chosen to use for strain engineering, based on these data.

TABLE 13

Enzymes chosen for CBP strain construction.

GH/CE

Plasmid

FC#

Enzyme type

family

Donor Organism

Accession #

Reference

7

Acetylxylanesterase

CE1

Neosartorya fischeri

XP_001262186

pMU1934

16

glucuronyl esterase

NA

Chaetomium globosum

XP_001226041

pMU1879

36

beta-xylosidase, his

GH43

Pyrenophora tritici-

XP_001940956

pMU2173

tagged

repentis

(non-his tagged)

72

Endoglucanase I

GH7

Aspergillus fumigatus

XP_747897

pMU1626

106

alpha-glucuronidase

GH115

Aspergillus oryzae

BAE56806

pMU3220

124

endo-beta-

GH5/GH2

Neosartorya fischeri

XP_001262744

pMU3131

mannanase/mannosidase

Several strains were created using the approaches for integrating islands of genetic elements into S. cerevisiae as described in U.S. Appl. No. 61/557,971, filed Nov. 10, 2011, Intl Appl. No. PCT/US2012/064457, filed Nov. 9, 2012, and Intl Pub. No. WO2011/140386, which are herein incorporated by reference. The strains created to express the enzymes described in Table 13 are listed in Table 14. Table 14 lists the assembly “M′A” used to build the strain. This is a set of PCR products that when transformed into a yeast strain assemble into a genetic island and integrate the target genes for overexpression at a particular location in the genome. Table 15 provides the details of the elements of each MA, with the PCR primers and templates needed to generate each piece. Table 16 provides details on the plasmids used, and Table 17 provides the sequences of the primers detailed in Table 14.

TABLE 14

Strains of S. cerevisiae engineering for enzyme expression and

consolidated bioprocessing of hardwood derived soluble oligomers.

Strain #

Parental Strain

MA or plasmid (pMU) transformed

Secreted enzymes expressed/relevant characteristics

M1744

See Reference

See reference cited in application

S. cerevisiae, Δura3

M2390

Wild Type

See reference cited in application

S. cerevisiae

M2108

See Reference

See reference cited in application

Xylose utilizing, robust industrial S. cerevisiae

strain

M2433

M2108

See reference cited in application

Glycerol reduction, acetate uptake version of

M2108

M3059

M2433

NA, Adaptation

More robust version of M2433

M2874

M2390

See reference cited in application

Xylose utilizing, robust industrial S. cerevisiae

strain

M3799

M2874

NA, Adaptation

More robust, faster xylose utilizing version of

M2874

M3222

M2108

MA242

S. cerevisiae strain expressing A. niger xyn11, P.

t. repentis xld43 and N. fischeri AXE

M3701

M3222

MA360a

S. cerevisiae strain expressing A. niger xyn11, P.

t. repentis xld43, N. fischeri AXE, T. reesei

alpha-galactosidase and N. fischeri beta-

mannosidase

M3702

M3222

MA360c

S. cerevisiae strain expressing A. niger xyn11, P.

t. repentis xld43, N. fischeri AXE, T. reesei

alpha-galactosidase and A. oryzae alpha-

glucuronidase

M3703

M3059

MA242

S. cerevisiae strain expressing A niger xyn11, P.

t. repentis xld43 and N. fischeri AXE

M4059

M3703

MA360c

S. cerevisiae strain expressing A. niger xyn11, P.

t. repentis xld43, N. fischeri AXE, T. reesei

alpha-galactosidase and A. oryzae alpha-

glucuronidase

M3318

M1744

pMU3131

S. cerevisiae strain expressing N fischeri beta-

mannosidase

M2295

M1744

pMU2648

S. cerevisiae strain expressing A. aculeatus beta-

mannanase

M3240

M2390

MA FCY@rDNA v2 (see below

S. cerevisiae strain expressing A. fumigatus EG1

MA197 in the MA database)

M3460

M3059

MA177

S. cerevisiae strain expressing S. fibuligera bgl

M4494

M4170

MA430i

S. cerevisiae strain expressing A. fumigatus

AE16

M4170

M3799

MA335, MA336

S. cerevisiae strain marked at apt2 locus with

kan/tdk marker and NAT/tdk marker.

M2963

M2390

MA162

S. cerevisiae strain expressing A. fumigatusEG1

M3918

M3799

MA602

S. cerevisiae strain marked at gpd1 locus with

kan/tdk marker and NAT/tdk marker.

M4044

M3918

MA292

Glycerol reduction, acetate uptake version of

M3799

M4642

M4044

NA, Adaptation

More robust version of M4044

M4683

M4642

MA509, MA510

S. cerevisiae strain marked at YLR296W locus

with kan/fcy1 marker and NAT/fcy1 marker.

M4782

M4683

MA548

S. cerevisiae strain expressing A. niger xyn11, P.

t. repentis xld43, N. fischeri AXE, A. fumigatus

CE16, T. reesei alpha-galactosidase and A.

fumigatus EG1

M4836

M4782

MA513, MA514

S. cerevisiae strain expressing A. niger xyn11, P.

t. repentis xld43, N. fischeri AXE, A. fumigatus

CE16, T. reesei alpha-galactosidase and A.

fumigatus EG1 strain marked at APT2 locus with

kan/fcy1 marker and NAT/fcy1 marker.

M5453

M4836

MA715

S. cerevisiae strain expressing A. niger xyn11, P.

t. repentis xld43, N. fischeri AXE, A. fumigatus

CE16, T. reesei alpha-galactosidase and A.

fumigatus EG1

M4638

M3799

NA, Adaptation

More robust version of M3799

M4679

M4638

MA509, MA510

S. cerevisiae strain marked at YLR296W locus

with kan/fcy1 marker and NAT/fcy1 marker.

M4777

M4679

MA546

S. cerevisiae strain expressing A. niger xyn11, P.

t. repentis xld43, N. fischeri AXE, A. fumigatus

CE16, A. oryzae alpha-glucuronidase and S.

fibuligera BGL

M4821

M4777

MA513, MA514

S. cerevisiae strain expressing A. niger xyn11, P.

t. repentis xld43, N. fischeri AXE, A. fumigatus

CE16, A. oryzae alpha-glucuronidase and S.

fibuligera BGL marked at APT2 locus with

kan/fcy1 marker and NAT/fcy1 marker.

M5401

M4821

MA715

S. cerevisiae strain expressing A. niger xyn11, P.

t. repentis xld43, N. fischeri AXE, A. fumigatus

CE16, A. oryzae alpha-glucuronidase and S.

fibuligera BGL

M3456

M3059

MA174

S. cerevisiae strain expressing P. t. repentis

xld43

M3461

M3059

MA177

S. cerevisiae strain expressingS. fibuligera BGL

M4477

M4170

MA429b

S. cerevisiae strain expressing N. fischeri AXE

M4495

M4170

MA430i

S. cerevisiae strain expressing A. fumigatus

CE16

M4617

M4170

MA431d

S. cerevisiae strain expressing A. oryzae alpha-

glucuronidase

M4918

M4170

MA408H

S. cerevisiae strain expressing alpha-

galactosidase

M3886

M3059

MA178

S. cerevisiae strain expressing N. fischeri AXE

M4472

M4170

MA0427b

S. cerevisiae strain expressing P. t. repentis

xld43

M4475

M4170

MA0428a

S. cerevisiae strain expressing A. niger xyn11

M4658

M4472

MA0462

S. cerevisiae strain expressing P. t. repentis

xld43

M4819

M4777

MA513, MA514

S. cerevisiae strain expressing A. niger xyn11, P.

t. repentis xld43, N. fischeri AXE, A. fumigatus

CE16, A. oryzae alpha-glucuronidase and S.

fibuligera BGL marked at APT2 locus with

kan/fcy1 marker and NAT/fcy1 marker.

M4888

M4819

MA548

S. cerevisiae strain expressing 8 secreted

enzymes: A. niger xyn11, P. t. repentis xld43, N.

fischeri AXE, A. fumigatus CE16, A. oryzae

alpha-glucuronidase, S. fibuligera BGL, T.

reesei alpha-galactosidase and A. fumigatus

EG1

M5754

M5401

MA530, MA531

S. cerevisiae strain expressing A. niger xyn11, P.

t. repentis xld43, N. fischeri AXE, A. fumigatus

CE16, A. oryzae alpha-glucuronidase and S.

fibuligera BGL marked at APT2 locus with

kan/fcy1 marker and NAT/fcy1 marker.

M5870

M5754

MA789

S. cerevisiae strain expressing 8 secreted

enzymes: A. niger xyn11, P. t. repentis xld43, N.

fischeri AXE, A. fumigatus CE16, A. oryzae

alpha-glucuronidase, S. fibuligera BGL, T.

reesei alpha-galactosidase and N. fischeri beta-

mannosidase

M5891

M4170

MA472f

S. cerevisiae strain expressing N. fischeri beta-

mannosidase

TABLE 15

DNA assemblies (MAs) used to create strains for consolidated bioprocessing of soluble oligomers.

Assembly Fragments, Primers, and Templates

MA

Piece ID#

1

2

3

4

5

242

Description

rDNA f1

ScADH1p-

ScPFK1p-Nf

ScENO1p-

TEFp-Zeo-

Anxyn-

AXE-

Ptrxld43-

TPI1t

ScPDC1t

ScHXT21t

ScENOlt

Primers

X16549/

X16553/

X16555/

X16557/

X16559/

X16550

X16554

X16556

X16558

X16560

Template

gDNA

pMU2816

pMU1934

pMU2173

pMU2437

(M2108)

Size

1985

2339

2712

2236 

1244

360a

Description

Ty transposon

pENO1/Nf beta-

pAgTEF/kan/

pADH1

Tr AGL

f1

mannosidase/

ALD6 t

ENO1 t

Primers

X13680/

X17624/

X17626/

X18207/

X18180/

13684

17625

18206

18179

18181

Template

gDNA

pMU3131

pMU2143

gDNA

pMU2981

Size

2279

2218

1708

750

1389

360c

Description

Ty transposon

pENO1/Ao

pAgTEF/kan/

pADH1

Tr AGL

f1

alpha-

ALD6 t

glucuronidase/

ENO1 t

Primers

X13680/

X17624/

X17626/

X18207/

X18180/

13684

17625

18206

18179

18181

Template

gDNA

pMU3220

pMU2143

gDNA

pMU2981

Size

2279

4090

1708

750

1389

FCY

Description

rDNA

FCY5′

AgTEFp-

FCY5′

rDNA

v2

5′ flank

flank/pFBA1/EG1/

zeo-TPIt

flank/pFBA1/EG1/

3′ flank

HXT7 t/FCY

HXT7 t/FCY

3′ flank

3′ flank

Primers

X13185/

X16143/

X16193/

X16194/

16197/

16146

16192

16195

16196

13188

Template

gDNA

M2963

pMU2437

M2963

gDNA

gDNA

gDNA

Size

2012

2724

1286

2724 

2047

177

Description

FCY1 f1

pTEF1

SFBGL

ENO2t

FCY1

f2

Primers

X11631/

X17396/

X17388/

X17390/

X11633/

11632

X17395

17389

17391

11634

Template

gDNA

gDNA

pMU991

gDNA

gDNA

Size

2018

 830

2725

283

2734

430i

Description

APT2 f1

pPGK1

Af CE16

GND1 t

APT2

f2

Primers

X19747/

X19790/

X19797/

X19799/

X19751/

X19748

X19808

X19798

X19800

X19752

Template

M4170

M4170

pMU3138

M4170

M4170

gDNA

gDNA

gDNA

gDNA

Size

2076

 749

1107

500

2108

335

Description

APT2

TPI1p-KAN-

HXT2p-

APT2

FBA1t

TDK-ACT1t

Primers

X18578

X18579

X18363

X18588

X18582

X18362

X18586

X18589

Template

M2390

pMU2681

pMU2623

M2390

gDNA

gDNA

Size

2113

1834

2355

2145 

336

Description

APT2

AgTEFp-

pHXT7-

APT2

ScNat-

TDK-PMA1t

AgTEFt

Primers

X18583

X18585

X18403

X18590

X18584

X18402

X18587

X18589

Template

M2390

pMU2660

pMU2874

M2390

gDNA

gDNA

Size

2098

1266

2156

2145 

162

Description

FCY1 f1

FBA1p

AfEG1

HXT7t

FCY1

f2

Primers

X11631/

X16156/

X16151/

X16152/

X11633/

11632

16157

16154

16153

11634

Template

M2390

M2390

pMU1821

M2390

M2390

gDNA

gDNA

gDNA

gDNA

Size

2018

 681

1420

575

2734

602

Primers

X16905/

X16903/

X15547/

X16906

X18848

X16908

Template

M2390

pMU2873,

M2390

gDNA

pMU2879

gDNA

Size

1934

3820, 3583

1904

292

Description

GPD1

ADH-HXT2

pTPI-ADH-

GPD1

5′ Flank

FBA1trc

3′ Flank

Primers

15458/

17239/

14896/

17074/

17238

14897

17073

15468

Template

gDNA

pMU2745

pMU2746

gDNA

Size

1915

3299

3709

1906 

509

Description

296W

AgTEFp-

FCY1t-

FCY-

296W

upstream

kan-TPIt

FCY

ScURAp

downstream

Primers

X20353

X20355

X21042

X21044

X20357

X20354

X21041

X21043

X20356

X20358

Template

M2390

pMU2877

M2390

pMU2877

M2390

gDNA

gDNA

gDNA

Size

2087

1665

677 bp

742 bp

1866

510

Description

296W

AgTefp-

FCY1t-

FCY-

296W

upstream

ScNat-

FCY

ScURAp

downstream

AgTeft

Primers

X20353

X20355

X21046

X21044

X20357

X20354

X21045

X21043

X20356

X20358

Template

M2390

M3699

M2390

pMU2877

M2390

gDNA

(pMU2660)

gDNA

gDNA

Size

2087

1168

677 bp

742 bp

1866

548

Description

296W

Xld43

AXE

SE34

CYC1t

5′ flank

Primers

X21383

X21385

X21387

X21389

X20514

X21384

X21386

X21388

X21390

X21390

Template

gDNA

M3456

M4477

M4475

gDNA

Size

2264

2430

2097

2326 

580 bp

513

Description

APT2

AgTEFp-

FCY1t-

FCY-

APT

5′ flank

kan-TPIt

FCY

ScURAp

3′ flank

Primers

X21331

X21333

X21042

X21044

X21335

X21332

X21041

X21043

X21334

X21336

Template

M2390

pMU2877

M2390

pMU2877

M2390

gDNA

gDNA

gDNA

Size

2087

1665

677 bp

742 bp

1866

514

Description

APT2

AgTefp-

FCY1t-

FCY-

APT

5′ flank

ScNat-

FCY

ScURAp

3′ flank

AgTeft

Primers

X21331

X21333

X21046

X21044

X21335

X21332

X21045

X21043

X21334

X21336

Template

M2390

pMU2660

M2390

pMU2877

M2390

gDNA

gDNA

gDNA

Size

2087

1168

677 bp

742 bp

1866

715

Description

apt2

Xld43

SE34

apt2

5′ flank

3′ flank

Primers

X22464

X22466

X22206

X22479

X22465

X22205

X22478

X22469

Template

gDNA

M3456

M4777

gDNA

Size

2264

2430

2326

2270 

546

Description

296W

Xld43

AXE

ADH1p-

CYC1t

5′ flank

SE34

Primers

X21383

X21385

X21387

X21389

X20514

X21384

X21386

X21388

X20513

X21390

Template

gDNA

M3456

M4477

M4475

gDNA

Size

2264

2430

2097

1780 bp

580 bp

174

Description

FCY1 f1

CCW12p

Ptr Xld43

TEF2t

FCY1 f2

Primers

X11631

X12485

X16151

X17331

X11633

X11632

X17342

X17330

X17332

X11634

Template

gDNA

gDNA

pMU2173

gDNA

gDNA

Size

2018

 830

1141

580

2734

177

Description

FCY1 f1

TEF1p: X17396/

SFBGL

ENO2t

FCY1 f2

17395 = 830 bp

Primers

X11631

X17396

X17388

X17390

X11633

X11632

X17395

X17389

X17391

X11634

Template

gDNA

gDNA

pMU991

gDNA

gDNA

Size

2018

 830

2725

283

2734

429b

Description

APT2

pGPM412/

APT2

NfAXE/PGI1 t

Primers

X19747

X19762

X19751

X19748

X19763

X19752

Template

M4170

M3886

M4170

gDNA

gDNA

gDNA

Size

2076

2099

2108

430i

Description

APT2 f1

PGK1p

Af CE16

GND1 t

APT2 f2

Primers

X19747

X19790

X19797

X19799

X19751

X19748

X19808

X19798

X19800

X19752

Template

M4170

M4170

pMU3138

M4170

M4170

gDNA

gDNA

Smal cut

gDNA

gDNA

Size

2076

1067

1144

572

2108

431d

Description

APT2 f1

PYK1p

Ao alpha-

TPI1 t

APT2 f2

glucuronidase

Primers

X19747

X19780

X19812

X19814

X19751

X19748

X19818

X19813

X19815

X19752

Template

M4170

M4170

pMU3220

M4170

M4170

gDNA

gDNA

Smal cut

gDNA

gDNA

Size

2076

1067

3083

565

2108

178

Description

FCY1 f1

GPM1-

CE1/AXE

PGI1

FCY1 f2

412p

Primers

X11631

X 16191

X17404

X17406

X11633

X11632

X17412

X17405

X17407

X11634

Template

gDNA

gDNA

pMU1934

gDNA

gDNA

Size

2018

 492

1147

580

2734

427b

Description

APT2

pCCW12/

APT2

Ptrxld43/TEF2 t

Primers

X19747

X19753

X19751

X19748

X19754

X19752

Template

M4170

M3456

M4170

gDNA

gDNA

gDNA

Size

2076

2434

2108

428a

Description

APT2

pADH1/Anxyn-

APT2

SE34/PDC1 t

Primers

X19747

X19756

X19751

X19748

X19757

X19752

Template

M4170

pMU2816

M4170

gDNA

gDNA

Size

2076

2271

2108

462

Description

YLR296W

pCCW12/

YLR296W

5′

Ptrxld43/TEF2 t

3′

Primers

X20251

X20253

X20255

X20252

X20254

X20256

Template

M4170

M3456

M4170

gDNA

gDNA

gDNA

Size

2264

2430

2270

530

Description

IME1

AgTEFp-kan-

FCY1t-

FCY-

IME1 3′

5′flank

TPIt

FCY

ScURAp

flank

Primers

X21343

X21345

X21042

X21044

X21347

X21344

X21041

X21043

X21346

X21348

Template

M2390

pMU2877

M2390

pMU2877

M2390

gDNA

gDNA

gDNA

Size

~2000 

1665

677 bp

742 bp

~2000 

531

Description

IME1

AgTefp-

FCY1t-

FCY-

IME1

5′flank

ScNat-

FCY

ScURAp

3′ flank

AgTeft

Primers

X21343

X21345

X21046

X21044

X21347

X21344

X21045

X21043

X21346

X21348

Template

M2390

pMU2660

M2390

pMU2877

M2390

gDNA

gDNA

gDNA

Size

~2000 

1168

677 bp

742 bp

~2000 

789

Description

IME1

Xld43

SE34

mannosidase

Xld43

5′

(mns)

Primers

X21343

X22959

X22206

X22969

X23150

X22958

X22205

X22968

X22970

X22880

Template

M3799

M3456

M4777

M5891

M3456

gDNA

Size

2264

2430

2326

2393 

2430

Description

APT2 f1

Hsp150p

Nf mannosidase

GND1 t

APT2 f2

Primers

X19747

X19784

X19797

X19799

X19751

X19748

X19805

X19798

X19800

X19752

Template

M4170

M4170

pMU3131

M4170

M4170

gDNA

gDNA

Smal cut

gDNA

gDNA

Size

2076

 800

1144

572

2108

472f

Description

APT2 f1

Hsp150p

Nf mannosidase

GND1 t

APT2 f2

Primers

X19747

X19784

X19797

X19799

X19751

X19748

X19805

X19798

X19800

X19752

Template

M4170

M4170

pMU3131

M4170

M4170

gDNA

gDNA

Smal cut

gDNA

gDNA

Size

2076

 800

1144

572

2108

Assembly Fragments, Primers, and Templates

MA

Piece ID#

6

7

8

9

242

Description

ScENO1p-

ScPFK1p-Nf

ScADH1p-

rDNA f1

Ptrxld43-

AXE-

Anxyn-

ScENO1t

ScHXT21t

ScPDC1t

Primers

X16561/

X16563/

X16565/

X16551/

X16562

X16564

X16566

X16552

Template

pMU2173

pMU1934

pMU2816

gDNA

(M2108)

Size

2236

2712

2339

2020

360a

Description

PDC1 t

Ty transposon

f2

Primers

X18182/

X13681/

17629

13682

Template

gDNA

gDNA

Size

 500

2122

360c

Description

PDC1 t

Ty transposon

f2

Primers

X18182/

X13681/

17629

13682

Template

gDNA

gDNA

Size

 500

2122

FCY

Description

v2

Primers

Template

Size

177

Description

Primers

Template

Size

430i

Description

Primers

Template

Size

335

Description

Primers

Template

Size

336

Description

Primers

Template

Size

162

Description

Primers

Template

Size

602

Primers

Template

Size

292

Description

Primers

Template

Size

509

Description

Primers

Template

Size

510

Description

Primers

Template

Size

548

Description

CE16

AGL1

EG1

296W

3′ flank

Primers

X21391

X21651

X21653

X21655

X21650

X21652

X21654

X21398

Template

M4495

M4918

M2963

gDNA

Size

2424

2540

2480

2270

513

Description

Primers

Template

Size

514

Description

Primers

Template

Size

715

Description

Primers

Template

Size

546

Description

CE16

a-gluc

BGL

296W

3′ flank

Primers

X21391

X21393

X21395

X21397

X21392

X21394

X21396

X21398

Template

M4495

M4617

M3461

gDNA

Size

2424

4371

3689

2270

174

Description

Primers

Template

Size

177

Description

Primers

Template

Size

429b

Description

Primers

Template

Size

430i

Description

Primers

Template

Size

431d

Description

Primers

Template

Size

178

Description

Primers

Template

Size

427b

Description

Primers

Template

Size

428a

Description

Primers

Template

Size

462

Description

Primers

Template

Size

530

Description

Primers

Template

Size

531

Description

Primers

Template

Size

789

Description

SE34

AGL

IME1 3′

Primers

X23004

X22973

X22975

X22972

X22974

X21348

Template

M4777

M4918

M3799

gDNA

Size

2326

2326

2270

Description

Primers

Template

Size

472f

Description

Primers

Template

Size

TABLE 16

Plasmids used in strain construction.

E. coli

E. coli

S. cerevisiae

S. cerevisiae

Heterologous genes expressed:

Plasmids

markers

replication

markers

replication

Promoter/gene/terminator

pMU2816

bla (amp)

pBR322

ura,

pADH1/A. niger endo-xylanase (xyn10)/PDC1 t

ble(zeo)

pMU1934

bla (amp)

pBR322

ura,

pPFK1/N fischeri AXE/HXT2 t

ble(zeo)

pMU2173

bla (amp)

pBR322

ura,

pENO1/P. t. repentis xld43/ENO1 t

ble(zeo)

pMU2437

cat

repB

ble(zeo)

(chloramphenicol)

pMU2981

bla (amp)

pBR322

ura,

pENO1/T. reesei AGL/ENO1 t

ble(zeo)

pMU3131

bla (amp)

pBR322

ura,

pENO1/N. fischeri β-mannosidase/ENO1 t

ble(zeo)

pMU3220

bla (amp)

pBR322

ura,

pENO1/A. oryzae α-glucuronidase/ENO1 t

ble(zeo)

pMU3138

bla (amp)

pBR322

ura,

pENO1/A. fumigatus CE16/ENO1 t

ble(zeo)

pMU2143

bla (amp)

pMB1

ura, kan

pPGK1/C. lucknowense CBH2/ENO1 t

(G418)

pMU991

bla (amp)

pMB1

ura

No promoter/S. fibuligera BGL/ENO1 t

PMU2623

bla (amp)

pBR322

ura

pAgTEF/zeo marker/AgTEF t and p

PMU2660

bla (amp)

pBR322

ura

AgTEFp/Nat marker/AgTEFt

pMU2681

bla (amp)

pBR322

ura

TPI1p/KAN marker/FBA1t

pMU2874

bla (amp)

pMB1

ura

pHXT7/TDK marker/PMA1t

pMU2877

bla (amp)

pMB1

ura

Ura3p/FCY1/Ura3t Teflp/Kan marker/TPIt

pMU2745

bla (amp)

pBR322

ura

PFK1p B. adolescentus AADH pAgTEF/zeo

marker/AgTEF

pMU2746

bla (amp)

pBR322

ura

TPI1p B. adolescentus AADHFBA1t pAgTEF/zeo

marker/AgTEF

pMU2873

bla (amp)

pMB1

ura

Tefp/KAN marker/Teflt pHXT7/TDK marker/PMA1t

pMU2879

bla (amp)

pMB1

ura

AgTEFp/Nat marker/AgTEFt/pHXT7/TDK

marker/PMA1t

TABLE 17

Primers used in strain construction.

Primer

Name

Sequence (5′-3′)

Description

X11631

TTGCCAAAGTGGATTCTCCTACTCAAGCTTTGCAAACAT

FCY1 5′ flank For

2.0 KB

X11632

TAGCTATGAAATTTTTAACTCTITAAGCTGGCTCTCATC

FCY1 5′ flank Rev

AA

X11633

AGCACGCAGCACGCTGTATTTACGTAT

FCY1 3′ flank For

2.7 KB

X11634

TAGCCCTTGGTTGAGCTTGAGCGACGTTGAGGT

FCY1 4′ flank Rev

2.7 KB

X11643

tacccgggaatcagttctgttattaacgacgagccaaat

URA3 rev, tails 

tccagaaaaacagtaaggga

for 100 bp DR

X12485

gatgagagccagcttaaagagttaaaaatttcatagcta

YML -5′FCY + 5′

ggatgtaaaatccgacacgc

CCW12 promoter

X13185

AAAGGATTTGCCCGGACAG

rDNA f1

X13188

CCAGCAAATGCTAGCACCAC

rDNA f2

X13680

CACCCACACATTTCTCATGG

TY B f1

X13681

CACACATGAGTCGTCGCACG

TY B f2

X13682

CGGAAGAGGTTTTGTCATCAC

TY B f2

X13684

GCTCGGGAATCCGCTGTGG

TY B f1

X14896

tggtggaaccatttactgtattttcaatgtaacgctaga

FBA1t + HXT2t

gaataaattcaagttaaaag

X14897

ACATCATCTTTTAACTTGAATTTATTCTCTAGCGTTACA

HXT2t + FBA1t

TTGAAAATACAGTAAATGGT

X15458

aagcctacaggcgcaagataacacat

GPD1 5′

X15468

GAAACCCTCATTACGGACTTTCTCAG

GPD1 3′

X16143

CGCGCGTTTCCGTATTTTCCGCTTCCGCTTCCGCAGTAA

rDNA f1 + FCY1 f1

AAAATAGTGAGGAACTGGGTTACCCCTTAAAGAGTTAAA

fragment

AATTTCATAGC

X16146

TAGCTATGAAATTTTTAACTCTTTAAGGGGTAACCCAGT

FCY f1 fragment +

TCCTCAC

rDNA f1

X16151

ATGTTGTTGCAAGCTTTTTTG

AfEG1 start

X16152

TCAAGTTTTGAATCCATGGTACTCTCAATGCTTATAATT

AfEG1 + HXT7 term

TGCGAACACTTTTATTAATTC

X16153

TATAAAATTAAATACGTAAATACAGCGTGCTGCGTGCTC

FCY f2 + HXT7 term

ATAGATGCATTGTGAAAATTG

X16154

AATTAGAGCGTGATCATGAATTAATAAAAGTGTTCGCAA

HXt7 term + AfEG1

ATTATAAGCATTGAGAGTACC

X16156

TTGATGAGAGCCAGCTTAAAGAGTTAAAAATTTCATAGC

FCY f1 + FBA1 prom

TACTACTTGGCTTCACATACG

X16157

CAAAACCAGCCAACAAAAACAAAAAAGCTTGCAACAACA

AfEG1 + FBA1 prom

TTTTGAATATGTATTACTTGG

X16191

tgatgagagccagcttaaagagttaaaaatttcatagct

FCY1 f1 + GPM1-412

aaaagatactagcgcgcgcac

promoter

X16192

TGCCCCTGAGCTGCGCACGTCAAGACTGTCAAGGAGGGT

AgTEF prom + FCY1

ATTCTGGGCCTCCATGTCGCTGGCCGGGTAAATACAGCG

f2 fragment

TGCTGCGTGCT

X16193

AGCACGCAGCACGCTGTATTTACCCGGCCAGCGACATGG

FCY1 12 fragment +

AG

AgTEF prom

X16194

TTATTCATTTGAAATATAAAATTTGGGCTTCTATATTTT

TPI term + FCY1 f2

AATATTGCTTTTCAATTACTGTTATTAAAAAATACAGCG

fragment

TGCTGCGTGCT

X16195

AGCACGCAGCACGCTGTATTTTTTAATAACAGTAATTGA

FCY1 f2 fragment +

AAAGC

TPI term

X16196

GCGACTCTCTCCACCGTTTGACGAGGCCATTTACAAAAA

rDNA f2 + FCY1 f1

CATAACGAACGACAAGCCTACTCCTTAAAGAGTTAAAAA

fragment

TTTCATAGCTA

X16197

TAGCTATGAAATTTTTAACTCTTTAAGGAGTAGGCTTGT

FCY1 f1 fragment +

CGTTCGTTATG

rDNA f2

X16549

AAAGGATTTGCCCGGACAG

5′ rDNA L

X16550

GGGTAACCCAGTTCCTCAC

5′ rDNA R

X16551

GAGTAGGCTTGTCGTTCG

3′ rDNA L

X16552

CCAGCAAATGCTAGCACCAC

3′ rDNA R

X16553

CCGCTTCCGCAGTAAAAAATAGTGAGGAACTGGGTTACC

xyn 1

CCGATTTTTTTCTAAACCGTGGAATATTT

X16554

CCAAAGTTAGTTAGATCAGGGTAAAAATTATAGATGAGG

xyn 2

TTTTCAATCATTGGAGCAATC

X16555

TGGTGCGGTCCATGTAAAATGATTGCTCCAATGATTGAA

AXE 1

AACCTCATCTATAATTTTTACCCTGATCTA

X16556

TGGAAGCTCGGATCAGTAGATAACCCGCCTAGAAGACTA

AXE 2

GGTTACATTGAAAATACAGTAAATGG

X17073

GAAAGTATGATATGTTATCTTTCTCCAATAAATCTACTT

pTPI + GPD13′

ATTCCCTTCGAGATTATATC

X17074

gttcctagatataatctcgaagggaataagtagatttat

GPD13′ + pTPI

tggagaaagataacatatca

X17238

GGTCGGCTCTTCCTTCTTCTTTGCGTCTGCCATCTTTAT

GPD15′ + Badoles

ATTATCAATATTTGTGTTTG

ADHe

X17239

ccctccacaaacacaaatattgataatataaagatggca

Badoles

gacgcaaagaagaaggaaga

ADHe + GPD1 5′

X17330

ggtatataaaaatattatatggaagcaataattattact

HXT7t + xld43

cttatgaagatggaaatggag

X17331

ggctcaaccacaaccatatactccatttccatcttcata

xld43 + HXT7t

agagtaataattattgcttcc

X17332

tatataaaattaaatacgtaaatacagcgtgctgcgtgc

FCY f2 + HXT7

tggggtagcgacggattaatg

X17342

caaaaccagccaacaaaaacaaaaaagcttgcaacaaca

Xld43 + CCW121p

ttattgatatagtgtttaagcg

X16557

CATAATAATGGTGGAACCATTTACTGTATTTTCAATGTA

xld 1

ACCTAGTCTTCTAGGCGGGTTATC

X16558

TCAAGGAGGGTATTCTGGGCCTCCATGTCGCTGGCCGGG

xld 2

TGCAAAGAGGTTTAGACATTG

X16559

TTCTAAGCTCAATGAAGAGCCAATGTCTAAACCTCTTTG

zeo 1

CACCCGGCCAGCGACATGG

X16560

GTTCTAAGCTCAATGAAGAGCCAATGTCTAAACCTCTTT

zeo 2

GCTTTAATAACAGTAATTGAAAAG

X16561

TTCTATATTTTAATATTGCTTTTCAATTACTGTTATTAA

xld 3

AGCAAAGAGGTTTAGACATTG

X16562

CATAATAATGGTGGAACCATTTACTGTATTTTCAATGTA

xld 4

ACCTAGTCTTCTAGGCGGGTTATC

X16563

GTGGAAGCTCGGATCAGTAGATAACCCGCCTAGAAGACT

AXE 3

AGGTTACATTGAAAATACAGTAAATGG

X16564

TTGGTGCGGTCCATGTAAAATGATTGCTCCAATGATTGA

AXE 4

AAACCTCATCTATAATTTTTACCCTGATCTA

X16565

CCAAAGTTAGTTAGATCAGGGTAAAAATTATAGATGAGG

xyn 3

TTTTCAATCATTGGAGCAATC

X16566

CGAGGCCATTTACAAAAACATAACGAACGACAAGCCTAC

xyn 4

TCCGATTTTTTTCTAAACCGTGGAATATTT

X17388

ATGGTCTCCTTCACCTCCCTC

SFBGL atg

X17389

AATAAGCAGAAAAGACTAATAATTCTTAGTTAAAAGCAC

ENO2t + SfBGL

TTCAAATAGTAAACAGGACAG

X17390

TGTTAATGATATCAAGACATCTGTCCTGTTTACTATTTG

SfBGL + ENO2t

AAGTGCTTTTAACTAAGAATT

X17391

TATATAAAATTAAATACGTAAATACAGCGTGCTGCGTGC

FCY f2 + ENO2t

TGAAAAAGCCACGCGTGTGCA

X17395

TGGCGGCGACGCCGGCGAGGAGGGAGGTGAAGGAGACCA

SfBGL + TEF1p

TTTTGTAATTAAAACTTAGATTAG

X17396

TGATGAGAGCCAGCTTAAAGAGTTAAAAATTTCATAGCT

FCYf1 + TEF1p

ACGTCAAGGGGGCATAAGAC

X17404

atgagagctttgtctgttttttttgc

CE1/AXE atg

X17405

gctttaatgttctttaggtatatatttaagagcgatttg

PGlt + CE1/AXE

tttataagcattgagaatacc

X17406

ttgtactgttgttaatgcttggtattctcaatgcttata

CE1/AXE + PGl1t

aacaaatcgctcttaaatatatacc

X17407

tatataaaattaaatacgtaaatacagcgtgctgcgtgc

FCY f2 + PGl1t

tgcacgttaaggacggccact

X17412

agaaacagaacaaagcaaaaaaaacagacaaagctctca

CE1/AXE +

ttattgtaatatgtgtgtttg

GPM412p

X17624

GTATAACTCCATGCTATACAACCACAGCGGATTCCCGAG

TyB f1 + ENO1t

CGAGGTTTAGACATTGGCTCT

X17624

GTATAACTCCATGCTATACAACCACAGCGGATTCCCGAG

TyB f1 + ENO1t

CGAGGTTTAGACATTGGCTCT

X17625

TCAAGGAGGGTATTCTGGGCCTCCATGTCGCTGGCCGGG

AgTEFp + ENO1p

TCTTCTAGGCGGGTTATCTAC

X17626

CCTAGTGGAAGCTCGGATCAGTAGATAACCCGCCTAGAA

ENO1p + AgTEFp

GACCCGGCCAGCGACATGGAG

X17629

GAAATCTTTAGATTTACTGGCGTGCGACGACTCATGTGT

TyB f2 + PDC1t

GTTTCAATCATTGGAGCAATC

X18179

TATCGATGCTGTGTGGTGTCATTTAATTAATGTATATGA

Tr AGL/pADH1

GATAGTTGATTGTATGCTTGG

X18180

ATACCAAGCATACAATCAACTATCTCATATACATTAATT

pADH1/Tr AGL

AAATGACACCACACAGCATCG

X18181

AACTTTAACTAATAATTAGAGATTAAATCGCGGCGCGCC

PDC1 t/Tr AGL

TTAGTGGTGGTGGTGATGATG

X18182

CTCATCATCACCACCACCACTAAGGCGCGCCGCGATTTA

Tr AGL/PDC1 t

ATCTCTAATTATTAGTTAAAG

X18206

ATCCGAAATATTCCACGGTTTAGAAAAAAATCGGTTCGA

pADH1/ALD6 t

AGAAGGATGTTATTATATGAT

X18207

CAGAGATCATATAATAACATCCTTCTTCGAACCGATTTT

ALD6 t/pADH1

TTTCTAAACCGTGGAATATTT

X18362

CCCCCCGTTTCTTTTCTTTGGACTATCATGTAGTCTCGC

FBA1t_HXT2p

TAGAGAATAAATTCAAGTTA

X18363

TTCAACATCATCTTTTAACTTGAATTTATTCTCTAGCGA

HXT2p_FBA1t

GACTACATGATAGTCCAAAG

X18402

TATTCCCTGGAAAAAAAATTTTGCGTTGCCTTTCTGGTC

TEFt_HXT7p

GACACTGGATGGCGGCGTTA

X18403

GCTGTCGATTCGATACTAACGCCGCCATCCAGTGTCGAC

HXT7p_TEFt

CAGAAAGGCAACGCAAAATTT

X18578

AGGTCCTCATCAAGGAGGTCACCAGTAATTGTGCGCTT

APT25′ flank F

X18579

AAGGAAAGGAAAATAATTGAAGGAGGAGGCAGAGAACCT

TPI1_5′ APT2 flank

ACTTATTCCCTTCGAGATTA

X18582

ATGGGTTCCTAGATATAATCTCGAAGGGAATAAGTAGGT

5′ APT2 flank_TPI1p

TCTCTGCCTCCTCCTTCAAT

X18583

GAGGTCACCAGTAATTGTGCGCTTTGGTTACATTTTGTT

APT25′ flank F_alt

GTACAGTAATGGGCGGTCAAG

X18584

CGCTGGCCGGGTGACCCGGCGGGGACAAGGCAAGCTGTT

5′ APT2 flank_TEFp

CTCTGCCTCCTCCTTCAAT

X18585

AAGGAAAGGAAAATAATTGAAGGAGGAGGCAGAGAACAG

TEFp_5′ APT2

CTTGCCTTGTCCCCGCCGGG

X18586

GTGTATATGCCTGTTCATTGCCTGTCCGCCTCTCATTGT

ACT1_3′ APT2

TTTGATTTGGTTCCCAGAAA

X18587

GTGTATATGCCTGTTCATTGCCTGTCCGCCTCTCATTAA

PMA1t_3′ APT2

ATTAGTGTGTGTGCATTATA

X18588

TGCTCATACCCTTTGTTTCTGGGAACCAAATCAAAACAA

3′ APT2_ACT1t

TGAGAGGCGGACAGGCAATG

X18589

ACTAATCAAAGTCAAACACGACTCTCAGCCATTTATTAA

APT23′ flank F

GTTCCTCAATTTTCGCCCTCC

X18590

TTAATTTTTAATATATATAATGCACACACACTAATTTAA

3′ APT2_PMA1t

TGAGAGGCGGACAGGCAATG

X19747

AGGTCCTCATCAAGGAGGTCACCAGTAATTGTGCGCTT

APT2-1

X19748

GTTCTCTGCCTCCTCCTTCAAT

APT2-2

X19751

AATGAGAGGCGGACAGGCAATG

APT2-3

X19752

ACTAATCAAAGTCAAACACGACTCTCAGCCATTTATTAA

APT2-4

GTTCCTCAATTTTCGCCCTCC

X19753

gcgaaggaaaggaaaataattgaaggaggaggcagagaa

pCCW12/xld43-1

cggatgtaaaatccgacacgc

X19754

tgcgtgtgtatatgcctgttcattgcctgtccgcctctc

TEF2 t/xld43-2

attggggtagcgacggattaa

X19756

aaggaaaataattgaaggaggaggcagagaaccgatttt

pADH1/Anxyn11-1

tttctaaaccgtggaatattt

X19757

cgtgtgtatatgcctgttcattgcctgtccgcctctcat

PDC1 t/Anxyn11-2

ttttcaatcattggagcaatc

X19762

gcgaaggaaaggaaaataattgaaggaggaggcagagaa

pGPM-412/NfAXE-1

caaagatactagcgcgcgcac

X19763

cgtgtgtatatgcctgttcattgcctgtccgcctctcat

PGl1 t/NfAXE-2

tgcacgttaaggacggccact

X19784

gcgaaggaaaggaaaataattgaaggaggaggcagagaa

apt2-pHSP150

cggaacaaatgcaccaaactg

X19790

AGGAAAGGAAAATAATTGAAGGAGGAGGCAGAGAACCGC

apt2-pPGK1

ACAGATATTATAACATCTGCA

X19797

TTATTCTTCTTAATAATCCAAACAAACACACATATTACA

AfCE16

ATAATGCATCGGTGGCAATTG

X19798

AAATTTTTTTGGTTTATGTCCAGGTTGGAGATTTCCTTT

GND1 t-AfCE16

AGTGGTGGTGGTGATGATGAG

X19799

AAGGTGGTTCTCCTCCTTCTCATCATCACCACCACCACT

AfCE16-GND1 t

AAAGGAAATCTCCAACCTGGA

X19800

ATGCCTGTTCATTGCCTGTCCGCCTCTCATTATAAAAAT

apt2-GND1 t

TCTTGTTAAATATTTCAGGAA

X19805

caaaaacaagccctagaagcaattgccaccgatgcattt

AfCE16-pHSP150

atattattattattgtactag

X19808

AAACAAGCCCTAGAAGCAATTGCCACCGATGCATTGTTT

AfCE16-pPGK1

TATATTTGTTGTAAAAAGTAG

X19812

atgaagctgatttggcctacg

Alpha-glucuronidase

X19813

tcatcatcaccaccaccactaagattaatataattatat

TPI1 t-Alpha-

aaaaatattatcttcttttct

glucuronidase

X19814

tccttctcatcatcaccaccaccactaagattaatataa

Alpha-glucuronidase-

ttatataaaaatattatcttc

TPI1 t

X19815

gtgtatatgcctgttcattgcctgtccgcctctcatttt

apt2-TPI1 t

taataacagtaattgaaaagc

X19818

gggccgtaaagagaagagacgtaggccaaatcagcttca

Alpha-glucuronidase-

ttgtgatgatgttttatttgt

pPYK1

X20251

gttgcatcaattgttcatcgacttggacttctggtgggg

YLR296W5 F

ctaaagctggagaagcaacaa

X20252

cctcgaaggttttcttttgcgtgtcggattttacatcca

YLR296W5 R

tagaatctgacgacgtaagga

X20253

gtttcccgctttttcttctccttacgtcgtcagattcta

xld43-1

tggatgtaaaatccgacacgc

X20254

acaaggtgtgcaattgttatgagtaggattcagttataa

xld43-2

ttaggggtagcgacggattaa

X20255

tcccaacaacaagtatgccattaatccgtcgctacccct

YLR296W3 F

aattataactgaatcctactc

X20256

gatataatatgagctcctagtgtaggcgatgaaggtgct

YLR296W3 R

caagtaa

X20353

ggccaaccataagaaagg

F_298W 5′ (tailless)

X20354

CAAGGAGGGTATTCTGGGCCTCCATGTCGCTGGCCGGGT

R_296W 5′ (tail to

ATAGAATCTGACGACGTAAG

AgTEFp)

X20355

gtttcccgctttttcttctccttacgtcgtcagattcta

F_AgTefp (tail to

tacccggccagcgacatggag

296W 5′)

X20356

GGTGTGCAATTGTTATGAGTAGGATTCAGTTATAATTAG

R_Ura3p (tail to 

GCATCAGAGCAGATTGTAC

296W 3′)

X20357

gtggtatggtgcactctcagtacaatctgctctgatgcc

F_296W 3′ (tail to

taattataactgaatcctac

Ura3 promoter)

X20358

GAACTGGCACAAACCTC

R_296W 3′ (tailless)

X20513

CATAACTAATTACATGATATCGACAAAGGAAAAGGGGCC

R_SE34 (overhang to

TGTCGCGCCTTATAACTAGAG

CYC1t)

X20514

catacactgctatcgcaaatgctctctagttataaggcg

F_CYC1t (overhang to

cgacaggccccttttcctttg

SE34)

X21041

GCCTACTGCTTAGCTGTTTCCGTCTCTACTTCTTTAATA

R_TPIt with overhang

ACAGTAATTGAAAAGC

to FCY1t

X21042

cttctatattttaatattgcttttcaattactgttatta

F_FCTt with overhang

aagaagtagagacggaaacag

to TPIt

X21043

CATGGTGACAGGGGGAATGG

R_FCY

X21044

ctactcaccaatatcttc

F_FCY

X21045

GGATAAGCCTACTGCTTAGCTGTTTCCGTCTCTACTTCT

R_Teft with overhang

CGACACTGGATGGCGGCG

to FCY1t

X21046

gctgtcgattcgatactaacgccgccatccagtgtcgag

F_FCTt with overhang

aagtagagacggaaacagc

to Teft

X21331

gactcattcattatgtcgtc

F_APT2 5′ flank

X21332

GTCAAGGAGGGTATTCTGGGCCTCCATGTCGCTGGCCGG

R_APT2 with

GTGTTCTCTGCCTCCTCCTTC

overhang to AgTef

promoter

X21333

gcgaaggaaaggaaaataattgaaggaggaggcagagaa

F_AgTefp with

cacccggccagcgacatggag

overhang to APT2 5′

flank

X21334

CGTGTGTATATGCCTGTTCATTGCCTGTCCGCCTCTCAT

R_ScUra3p with

TGGCATCAGAGCAGATTGTAC

overhang to APT2

3′ flank

X21335

ggtatggtgcactctcagtacaatctgctctgatgccaa

F_APT2 3′ flank with

tgagaggcggacaggcaatg

overhang to Ura3p

X21336

GAAGATTGTCTGTCATTTGCGC

R_APT2 3′ flank

X21343

gtccactaaatggcagtaaatg

F_IME1 5′ flank

X21344

GTCAAGGAGGGTATTCTGGGCCTCCATGTCGCTGGCCGG

R_IME1 with

GTTTTGTTTGTGGGGAGAGG

overhang to AgTef

promoter

X21345

gcttttctattcctctccccacaaacaaaacccggccag

F_AgTefp with

cgacatggag

overhang to IME1 5′

flank

X21346

GAGGGAAGGGGGAAGATTGTAGTACTTTTCGAGAAGGCA

R_ScUra3p with

TCAGAGCAGATTGTAC

overhang to IME1

3′ flank

X21347

gtggtatggtgcactctcagtacaatctgctctgatgcc

F_IME1 3′ flank with

ttctcgaaaagtactacaatc

overhang to Ura3p

X21348

GCCTTTGAACAATTTCCC

R_IME1 3′ flank

X21383

gcttgttctcgtttgtccc

F_YLR296W 5′ flank

X21384

CCTCGAAGGTTTTCTTTTGCGTGTCGGATTTTACATCCA

R_YLR29W 5′

TAGAATCTGACGACGTAAG

flankoverhang to

Xld43

X21385

gtttcccgctttttcttctccttacgtcgtcagattcta

F_Xld43 with

tggatgtaaaatccgacacgc

overhang to YL269W

5′ flank

X21386

GACGAAGCTTGTGTGTGGGTGCGCGCGCTAGTATCTTTG

R_Xld43 OH to Axe

GGGTAGCGACGGATTAATG

X21387

cccaacaacaagtatgccattaatccgtcgctaccccaa

F_AXE OH Xld43

agatactagcgcgcgc

X21388

GAAACAACAAAAGGATATCCGAAATATTCCACGGTTTAG

R_AXE OH SE34

AAGCACGTTAAGGACGGCCAC

X21389

ctaaacacgaattcaacaaagtggccgtccttaacgtgc

F_SE34 OH Axe

ttctaaaccgtggaatatttc

X21045

GGATAAGCCTACTGCTTAGCTGTTTCCGTCTCTACTTCT

R_Teft with overhang

CGACACTGGATGGCGGCG

to FCY1t

X21046

gctgtcgattcgatactaacgccgccatccagtgtcgag

F_FCTt with overhang

aagtagagacggaaacagc

to Teft

X21331

gactcattcattatgtcgtc

F_APT2 5′ flank

X21332

GTCAAGGAGGGTATTCTGGGCCTCCATGTCGCTGGCCGG

R_APT2 with

GTGTTCTCTGCCTCCTCCTTC

overhang to AgTef

promoter

X21333

gcgaaggaaaggaaaataattgaaggaggaggcagagaa

F_AgTefp with

cacccggccagcgacatggag

overhang to APT2 5′

flank

X21334

CGTGTGTATATGCCTGTTCATTGCCTGTCCGCCTCTCAT

R_ScUra3p with

TGGCATCAGAGCAGATTGTAC

overhang to APT2

3′ flank

X21335

ggtatggtgcactctcagtacaatctgctctgatgccaa

F_APT2 3′ flank with

tgagaggcggacaggcaatg

overhang to Ura3p

X21336

GAAGATTGTCTGTCATTTGCGC

R_APT2 3′ flank

X21383

gcttgttctcgtttgtccc

F_YLR296W 5′ flank

X21384

CCTCGAAGGTTTTCTTTTGCGTGTCGGATTTTACATCCA

R_YLR29W 5′

TAGAATCTGACGACGTAAG

flankoverhang to

Xld43

X21385

gtttcccgctttttcttctccttacgtcgtcagattcta

F_Xld43 with

tggatgtaaaatccgacacgc

overhang to YL269W

5′ flank

X21386

GACGAAGCTTGTGTGTGGGTGCGCGCGCTAGTATCTTTG

R_Xld43 OH to Axe

GGGTAGCGACGGATTAATG

X21387

cccaacaacaagtatgccattaatccgtcgctaccccaa

F_AXE OH Xld43

agatactagcgcgcgc

X21388

GAAACAACAAAAGGATATCCGAAATATTCCACGGTTTAG

R_AXE OH SE34

AAGCACGTTAAGGACGGCCAC

X21389

ctaaacacgaattcaacaaagtggccgtccttaacgtgc

F_SE34 OH Axe

ttctaaaccgtggaatatttc

X21390

GCAAATGCCTATTATGCAGATGTTATAATATCTGTGCGG

R_SE34 OH CE16

TCGACAACTAAACTGGAATG

X21391

gacttttgttgttccctcacattccagtttagttgtcga

F_CE16 OH SE34

ccgcacagatattataacatc

X21392

GCCGGAAAAACTTTCGGGTAGCGAAAATCTTTCTGCCCT

R_CE16 OH a-Gluc

TGTTAAATATTTCAGGAAC

X21393

ccaccaaggagaggaggatgttcctgaaatatttaacaa

F_A-gluc OH CE16

gggcagaaagattttcgctac

X21394

CAGATGGGGATGACCGTAGTCTTATGCCCCCTTGACGTT

R_A-gluc OH BGL

TAATAACAGTAATTGAAAAGC

X21395

cttctatattttaatattgcttttcaattactgttatta

F_BGL OH A-gluc

aacgtcaagggggcataagac

X21396

CAAGGTGTGCAATTGTTATGAGTAGGATTCAGTTATAAT

R_BGL OH

TACCCTTCCAGTGCATTATGC

YLR296W 3′ flank

X21397

caaagactcgtgctgtctattgcataatgcactggaagg

F_YLR296W 3′ flank

gtaattataactgaatcctac

OH BGL

X21398

CATAGGCGGGTAAGCGTTAAGG

R_YLR296W 3′ flank

X21650

ATTACTGCTTTAGGTCATCCACCACGGGTAGTGTTGAGG

R_CE16 cassette

ATTCTTGTTAAATATTTCAGG

(GND1t) with

overhang to AGL

cassette (Sed1p)

X21651

caccaaggagaggaggatgttcctgaaatatttaacaag

F_AGL cassette

aatcctcaacactacccgtgg

(Sed1p) with overhang

to CE16 cassette

(GND1t)

X21652

CTATATCGACGTATGCAACGTATGTGAAGCCAAGTAGAT

R_AGL cassette

TTAGGACACTAATTGAATC

(PYK1t) with

overhang to EG1

cassette (FBA1p)

X21653

gacgcgggcagattcaattagtgtcctaaatctacttgg

F_EG1 cassette

cttcacatacg

(FBA1p) with

overhang to AGL

cassette (PYK1t)

X21654

GGTGTGCAATTGTTATGAGTAGGATTCAGTTATAATTAC

R_EG1 cassette

ATAGATGCATTGTGAAAATTG

(PYK1t) with

overhang to 296W

X21655

gcttcaattttcacaatgcatctatgtaattataactga

F_296W 3′ flank with

atcctactc

overhang to EG1

cassette (PYK1t)

X22205

ggaaacaacaaaaggatatccgaaatattccacggttta

R_xld43 OH SE34

gaaggggtagcgacggattaa

X22206

atcccaacaacaagtatgccattaatccgtcgctacccc

F_SE34 OH xld43

ttctaaaccgtggaatatttc

X22464

aggtcctcatcaaggaggtcaccagtaattgtgcgctt

F_apt2 5′ flank

X22465

cctcgaaggttttcttttgcgtgtcggattttacatccg

R_apt2 OH pCCW12

ttctctgcctcctccttcaat

X22466

gcgaaggaaaggaaaataattgaaggaggaggcagagaa

F_xld43 OH apt2

cggatgtaaaatccgacacgc

X22469

ACTAATCAAAGTCAAACACGACTCTCAGCCATTTATTAA

R_apt2 3′ flank

GTTCCTCAATTTTCGCCCTCC

X22478

gtgtgtatatgcctgttcattgcctgtccgcctctcatt

R_SE34 OH apt2 3′

gtcgacaactaaactggaatg

flank

X22479

cttttgttgttccctcacattccagtttagttgtcgaca

F_apt2 3′ flank OH

atgagaggcggacaggcaatg

SE34

X22880

GACTTTTGTTGTTCCCTCACATTCCAGTTTAGTTGTCGA

R_Ccw12p with OH to

CGGATGTAAAATCCGACACGC

Cyc1t

X22958

gcaacctcgaaggttttcttttgcgtgtcggattttaca

R_IME1 OH pCCW12

tcctttgtttgtggggagagg

X22959

ataaaagaaaagcttttctattcctctccccacaaacaa

F_xld43 OH IME1

aggatgtaaaatccgacacgc

X22968

tttttgcagaatagatcaacagtttggtgcatttgttcc

R_SE34 OH mns

gtcgacaactaaactggaatg

X22969

gacttttgttgttccctcacattccagtttagttgtcga

F_mns OH SE34

cggaacaaatgcaccaaactg

X22970

aacaacaagtatgccattaatccgtcgctacccccactg

R_mns OH xld43

ctatgtatgttgaatcatgtt

X22972

ttactgctttaggtcatccaccacgggtagtgttgagga

R_SE34 OH AGL1

ttctaaaccgtggaatatttc

X22973

aaacaacaaaaggatatccgaaatattccacggtttaga

F_AGL1 OH SE34

atcctcaacactacccgtggt

X22974

gagggaagggggaagattgtagtacttttcgagaaattt

R_SE34 OH IME1 3′

aggacactaattgaatctgcc

flank

X22975

taaaaaatgacgcgggcagattcaattagtgtcctaaat

F_IME1 3′ flank OH

ttctcgaaaagtactacaatc

AGL1

X23004

acctcgaaggttttcttttgcgtgtcggattttacatcc

Corrected primer for

gtcgacaactaaactggaatg

22881 (CYC1 t F OH

pCCW12)

X23150

gtagactatccacacaaacatgattcaacatacatagca

F xld43rev OH mns

gtgggggtagcgacggattaa

Once a strain had been transformed with a particular MA, several colonies were isolated from that transformation for further testing. The colonies were screened by measuring their growth rates in xylose containing media (YPX) under anaerobic conditions (i.e., in an anaerobic chamber) in a Biotek 96 well plate reader equipped with the ability to incubate and shake. Measurements of optical density at 600 nm were taken every 10 minutes for 48 hours and strains were compared against each other. The colonies were also screened for their ability to produce the hydrolytic activity against C5 liquor as well as against substrates specific to the enzymes expressed (see Table 5 and following protocols). Once the top colonies from a particular transformation had been isolated, they were tested in small nitrogen flushed pressure bottles for their ability to directly convert C5 liquor to ethanol. After this final screen, top colonies were stocked in the freezer and given the name as listed in Table 14.

These strains were then tested in 2 L bioreactors in a fed-batch C5 liquor fermentation, and the results are presented in FIGS. 24-27. FIG. 24 demonstrates several important points. The xylose utilizing, robust background strain M2108 is shown in the black circles, and clearly is not able to produce substantial ethanol from this oligomeric solution. A single transformation with FC7, FC36, and FC138 (xylanase, xylosidase, and acetylxylanesterase) yielded strain M3222, produced >25 g/L of ethanol, or approximately 50% of theoretical hydrolysis yield of oligomers, where M2108 produced <5 g/L. This shows that the production of these hemicellulolytic enzymes in S. cerevisiae backgrounds capable of xylose utilization results in strains capable of direct conversion of substituted oligomers to ethanol. FIG. 25 also shows the performance of strain M3701, where FC139 and FC124 (α-galactosidase and β-mannosidase/mannase) have been transformed on top of the previously expressed enzymes. This strain produced ˜2 g/L more ethanol than M3222, which corresponds to ˜53% of theoretical hydrolysis yield of oligomers. Strain M3702 is also shown in FIG. 24. This strain expresses FC139 and FC106 (α-galactosidase and α-glucuronidase) and achieves ˜4 g/L more ethanol than M3222, or ˜58% conversion of oligomers.

FIG. 25 demonstrates the performance of strains expressing the combination of FC7, FC36, and FC138 (xylanase, xylosidase, and acetylxylanesterase) in either a xylose utilizing background (M3222) or one that has been engineered for glycerol reduction (M3703). The glycerol reduction pathway in this strain utilizes the acetate present in the stream to displace glycerol production, and this technology has been described in Int'l Pub. No. WO2011/140386. Example 1, above described how the strain M2433 was adapted to be more robust for C5 liquor fermentation. FIG. 25 shows that the combination of the glycerol reduction technology and the enzyme expression technology results in a significant benefit in performance, yielding a strain that realized a significant yield increase over M3222 of 14%. As FIG. 25 demonstrates, the glycerol yield of the strain M3703 has been substantially decreased relative to M3222, with the strain making approximately 5 fold less glycerol in the same reaction.

FIG. 26 presents data on the combination of the 5 enzyme system (FC7, FC36, FC138, FC139, and FC106) in a glycerol reduction background (M4059). This strain was compared against M3703, which produces 3 enzymes. As the figure shows, the rate of ethanol production is higher for M4059 than for M3703, although the strains end up achieving the same overall ethanol yield. In this fermentation, the 20 g/L of ethanol yield produced is the equivalent of ˜58% of theoretical hydrolysis yield, with an assumed fermentation yield of 0.46 g ethanol produced per gram of carbohydrate consumed.

FIG. 27 depicts the impact of combining several strains producing several enzymes with M4059 in a co-culture. In this case, strains that produced FC124, FC88, FC72, FC140, and FC136) were added in small amounts (0.1 g/L each at inoculation) along with M4059 (0.5 g/L inoculation). As the data in FIG. 27 shows, the addition of these strains resulted in a ˜25% increase in ethanol yield as compared to M4059, demonstrating the utility of these enzymes for hydrolysis. They also resulted in an increased release of acetate from the acetylated oligomers, producing 50% more free acetic acid and acetate (labeled as “acetate” in FIG. 27). The co-culture of strains was able to achieve ˜71% of theoretical hydrolysis and fermentation of the oligomers present in 120 hours.

Example 4

Creation of M4638 and M4642, Robust and Efficient Xylose Utilizing S. cerevisiae Strains Derived from M3799

Strain M3799, described above, was also engineered for glycerol reduction. Briefly, a gpd1 deletion was generated in M3799 with MA602 (Table 15). The Bifidobacterium adolescentis (B. adolescentis) adhE (acetaldehyde and alcohol dehydrogenase (bifunctional enzyme)) was integrated at the gpd1 locus by 5-fluorocytosine (5FC) counterselection with MA292 (Table 15) as detailed in Int'l Pub. No. WO2011/140386, which is incorporated herein by reference. The AADH integration was confirmed by polymerase chain reaction (PCR) and strains were tested for growth rates on xylose in the presence of acetate (YPX with 1 g/L acetate), as the strain utilizes acetate in order to displace glycerol production. The colonies were screened by measuring their growth rates in a BioTek 96 well plate reader equipped with the ability to incubate to 35° C. and shake. Measurements of optical density at 600 nm (OD600) were taken every 10 minutes for 48 hours and strains were compared against each other and to the benchmark M3799 strain. The strains with good growth on YPX with 1 g/L acetate were then tested for their ability to grow on hardwood derived C5 sugars. These comparisons were done by first hydrolyzing the liquor to monomer sugars by incubating with sulfuric acid at 121° C. in an autoclave, neutralizing to pH 6.0, and then loading them at starting concentrations of ˜45 g/L of xylose in small batch fermentations carried out in nitrogen flushed bottles. Strains were inoculated at 0.5 g/L starting concentration and the media components added were 0.5 g/L diammonium phosphate (DAP) and 12 g/L corn steep liquor (CSL). M3799 was included as a bench mark strain as well as another glycerol reduction strain that had been adapted on xylose after engineering the xylose pathway, M3059, a derivative of M2433 which was described in Int'l Pub. No. WO2011/140386, which is incorporated herein by reference. M3799 outperformed the other strains tested in terms of rate of fermentation. Data for the fermentations is shown in FIG. 75, and from this data it can be seen that M4042 and M4044, two glycerol reduction strains, can complete the fermentation of xylose to ethanol in this toxic environment with an approximate 24 hr delay compared their parental strain M3799. However, the glycerol reduction strains both showed higher ethanol yield compared to the M3799 parental strain, reaching a yield of 0.46 grams of ethanol per gram of sugar consumed, whereas M3799 reached only 0.42 grams of ethanol per gram of sugar consumed. The glycerol reduction strains in this fermentation, M3059 (M2108 derived) and M4042 and M4044, all completed the fermentations with less acetate present (0.4-0.6 g/L less) as compared to M3799, as expected.

Example 5

Adaptation of M3799 and M4044 on C5 Liquor

Strains M3799 and M4044 (glycerol reduction) were subjected to adaptation on hardwood derived C5 liquor to improve their performance in these toxic conditions.

M3799 was adapted by serial transfer in small fermentation vessels. To create selection media. C5 liquor (MS1011) was acid hydrolyzed and diluted to approximately 30 g/L xylose. Nutrients (12 g/L CSL, 5 g/L CaCO3, and 0.5 g/L DAP) were added for a total volume of 20 mL. M3799 was grown until significant pressure could be detected within the bottle, at which point a small amount was transferred to a new fermentation bottle. After the 20th fermentation, single colonies were isolated and screened for anaerobic growth rate on YPX and for performance on C5 hydrolyzed liquor compared to the parental strain, M3799. One isolate, strain M4638, was then compared to M3799 in 2 L bioreactors using a fed batch protocol with acid hydrolyzed C5 liquor at both 84 g/L and 120 g/L sugar loadings. At both loadings, M4638 performed better than M3799, the parent. At 84 g/L, M3799 achieved ˜10% less ethanol than M4638, FIG. 76B. However, at 120 g/L, M3799 was unable to ferment the xylose at all, while the adapted strain M4638 fermented and produced ˜30 g/L ethanol, FIG. 76A. The acid hydrolyzed liquor used in there reactors had ˜20 g/L acetate, which likely killed the parental strain M3799. However, M4638 was able to ferment the xylose, likely due to an increase in inhibitor tolerance and overall robustness after adaptation on the C5 liquor.

The glycerol reduction strain M4044 was subjected to a different type of adaptation, namely repeat batch fermentations where the selection media was alternated between two types of media. One type was acid hydrolyzed C5 liquor, while the other was residual material from a solids fermentation (spent fermentation beer, containing ethanol produced during fermentation and other materials released during enzymatic hydrolysis of the solids), which was reconstituted with glucose. Prior to the alternating batch fermentations, the strain was subjected to mutagenesis by peroxide via the following protocol.

Peroxide Mutagenesis Protocol:

Kill Curve Generation

Procedure*: * Based on Brennan et al., “Oxidative mutagens induce intrachromosomal recombination in yeast,” Mutation Research 308 (1994) 159-167

  • 1. Grow overnight culture in YPD
  • 2. Prepare media** and aliquot (5 mLs used in this experiment) ** Media for this experiment is YNB w/ammonium sulfate, 5 g/L glucose, no amino acids
  • 3. Add peroxide to desired concentration in each tube based on measured active peroxide concentration of stock solution
  • 4. Measure OD600 of culture and inoculate proper volume to attain a starting OD600 of 0.1
  • 5. Incubate at 35° C. overnight (17 hours)
  • 6. Measure OD600 of each culture, making dilutions if necessary
  • 7. Calculate percent survival based on OD600 of control culture

For M4044, it was found that 100 ug/mL peroxide was appropriate to achieve an approximate 75% survival rate. The mutagenesis for this adaptation was done at 1 L scale in the reactor that the adaptation was to be run in to generate a large population of mutants.

After mutagenesis of M4044, the cells were washed and the vessel was re-sterilized. 1 L of YPD media was inoculated with the entire cell mass from mutagenesis. The automated repeat batch system (Sartorius Biostat unit controlled with Labview software) was used for fermentation monitoring and automated media transfer. Fermentations alternated between a C5 liquor or a spent beer as described above. Nutrients for the fermentations for both types of media were CSL (12 g/L) and DAP (0.5 g/L). Glucose was added to the spent beer media at a final concentration of 60 g/L, and both media were supplemented with penicillin to prevent bacterial contamination. After the 28th fermentation, single colonies were isolated and screened for performance compared to their parental glycerol reduction strain M4044.

The top isolate identified, M4642, performed significantly better than the parental strain M4044 in C5 liquor fermentations, as can be seen in FIG. 77. At a feeding of 84 g/L total sugars in reactors, the background strain M4044 made ˜30 g/L ethanol while the adapted strain, M4642, made >35 g/L ethanol, FIG. 77A. The glycerol levels for M4044 and M4642 were ˜4 to 6 g/L lower than the parental strain M3799, FIG. 77B.

Example 6

Creation of Strains of M3799 Derived S. cerevisiae Engineered for Enzyme Expression and Consolidated Bioprocessing of Hardwood Derived Soluble Oligomers

Enzymes were engineered into the M3799 derived strain, M4638, and the M4044 adapted glycerol reduction strain, M4642, to create CBP strains. These were constructed and screened as described above. Briefly, a strain was transformed with a particular MA as listed in the Table 14 and then screened for growth rate on xylose containing media (YPX) or xylose plus 1 g/L acetate containing media (YPX+A), with specific enzyme assay as listed above, for their ability to hydrolyze C5 liquor in nitrogen flushed pressure bottles, and finally in C5 liquor bioreactors. The top strains are listed in Table 14.

A first round of strains was constructed via site directed integration of the enzymes to the YLR296 locus. This differs from the construction of M3701, M3702 and M4059 described above which were built with multi-copy integrations. The benefit of site directed integrations is that it leads to much more genetic stability, of the integrated genes encoding the enzymes. The results for the top strains that were tested in C5 liquor fermentations in 2 L bioreactors are shown in FIG. 78. FIG. 78 shows two strains, M4777 and M4782 (glycerol reduction strain), compared to the multi-copy M4059 strain from FIGS. 26 and 27. A single transformation of the strain M4638 with FC36, FC138, FC7, FC136, FC106 and FC140 (xylosidase, xylanase, acetylxylanesterase (AXE), acetyl esterase (AE), α-glucuronidase and β-glucosidase) yielded strain M4777, which produced 19.8 g/L of ethanol. A single transformation of strain M4642, the glycerol reduction strain, with FC36, FC138, FC7, FC136, FC139 and FC72 (xylosidase, xylanase, AXE, AE, α-galactosidase and endoglucanase 1) yielded strain M4782. M4782 also produced 19.8 g/L ethanol but was consistently 2-3 g/L ethanol ahead of M4777 over the course of the fermentation while having ˜1 g/L lower glycerol and 2-5 g/L less acetate. The glycerol reduction pathway in M4782 utilizes the acetate present in the C5 liquor to displace glycerol production from the strain as described above and in Int'l Pub. No. WO2011/140386, which is incorporated herein by reference. M4059 which has multiple copies of 5 genes has higher ethanol yield compared to these single round integration strains that express 6 genes at only 2-copy per gene (27 g/L vs 19.8 g/L ethanol). M4777 and M4782 ethanol yield is the equivalent of ˜50% and 45% of theoretical hydrolysis yield, respectively, while M4059 is ˜60%. Percent of theoretical hydrolysis yield was calculated assuming fermentation yield of 0.46 g ethanol per gram of carbohydrate consumed.

FIG. 79 presents data from strains where 2 additional copies of xylosidase (FC36) and xylanase (FC138) were targeted to the APT2 (YDR441C) locus in M4777 and M4782. These strains were first marked with an antibiotic marker and a negative selection marker cassette at APT2 (MA513 and MA514, see Tables 14 and 15) to generate M4821 and M4836, respectively. Integration of MA715 into M4821 and M4836 produced M5401 and M5453, respectively (see Table 14). These strains showed increased xylosidase and xylanase activity compared to their parent strains in the PNPX and birchwood xylan assays described above. These strains were tested in 2 L reactors alongside M4059, the multi-site directed strain previously described. The performance of these strains was tested under lower C5 liquor loadings (86 g/L total sugars) to reduce acetate toxicity. M5453 and M4059 both reached ˜21.5 g/L ethanol, while M5401 produced about 1.5 g/L more ethanol than M4059, an approximate 6% yield increase. The calculated percent of theoretical hydrolysis yield for M5453 and M5401 were 61% and 64% which is similar to the 63% theoretical hydrolysis yield of M4059. While the M5401 and M5453 strains secrete less enzyme at lab scale than M4059 (see activity data presented in FIG. 80) they perform as well as M4059 in these reactors, which is likely due to the superior growth characteristics of their parental strain M3799. The acetate release from M5401 and M5453 shows that the expression of the AXE (FC7) in combination with AE (FC136) in these strains is effective at removing ˜90% of the acetate from the substrate while M4059, expressing only the AXE and not the AE, releases only ˜60% of the theoretical acetate.

Example 7

Creation of Strains of an M3799 Derived S. cerevisiae Engineered for Expression of 8 Enzymes for the Consolidated Bioprocessing of Hardwood Derived Soluble Oligomers

M4777 derived M4821, described above, was further engineered at the APT2 (YDR441C) locus with MA548 which encodes additional copies of xylosidase, xylanase, AXE and AE (FC36, FC138, FC7 and FC136) as well as two additional genes encoding α-galactosidase and endoglucanase 1 (FC139 and FC72). The new strains express a total of eight enzymes compared to the six enzymes expressed in M4777. The strains were screened via the enzyme assays described above and compared to the parental strain M4777 and additional control strains. The top strain M4888 showed an increase in xylanase, PNPA and PNPX activity compared to the parental strain M4777 (FIG. 81). In addition, the activity of the newly incorporated α-galactosidase was confirmed in the PNP-galactosidase assay (FIG. 81).

M4888 was then tested for its ability to hydrolyze C5 liquor in nitrogen flushed pressure bottles. These comparisons were done by first hydrolyzing the liquor to monomer sugars by incubating with sulfuric acid at 121° C. in an autoclave, neutralizing to pH 6.0, and then loading at a starting concentrations of ˜45 g/L of xylose in small batch fermentations carried out in nitrogen flushed bottles. Strains were inoculated at 0.5 g/L starting concentration and the media components added were 0.5 g/L DAP and 12 g/L CSL. M4059 was included as a bench mark strain as well as the parental strain M4777. M4888 outperformed the other strains tested in these fermentations. Data for the fermentations is shown in FIG. 82. M4888 had a faster fermentation rate and produced 1.3 g/L more ethanol than M4777, and approximate 10%. The ethanol yield from M4888 is the equivalent of ˜75% of theoretical hydrolysis yield while M4777 is 68%. The improvement in M4888 over M4777 is likely due to the higher levels of secreted enzymes in M4888 and the additional expression of α-galactosidase and endoglucanase 1.

Example 8

Creation of Strains of an M3799 Derived S. cerevisiae Engineered for Expression of 8 Enzymes Including a Mannosidase for the Consolidated Bioprocessing of Hardwood Derived Soluble Oligomers

M4777 derived M4821, described above, was further engineered at the APT2 (YDR441C) locus with MA789 encoding additional copies of xylosidase and xylanase (FC36 and FC138) as well as two additional genes encoding β-mannosidase and α-galactosidase (FC124 and FC72). These strains are the result of three rounds of site directed integration into the M4638 background strain and have eight copies of xylosidase and xylanase genes (FC36 and FC138), two copies each of the AXE, AE, and α-glucuronidase, β-glucosidase, and α-galactosidase and β-mannosidase genes (FC7, FC136, FC106, FC140, FC139 and FC124). These strains expressing eight enzymes differ from M4888 described above in that they have twice as many gene copies of xylosidase and xylanase (FC36 ad FC138) as well as the expression of the mannosidase (FC124) instead of the endoglucanase I (FC72). The strains were screened via the enzyme assays described above and compared to the parental strain M5401. The top strain M5870 shows an increase in the PNPX assay measuring xylosidase activity. In addition, M5870 shows activity in the PNP-gal and AZCL-mannan for the newly integrated α-galactosidase and β-mannosidase genes (FIG. 88).

M5870 was then tested in 2 L reactors alongside the parental CBP strain M5401 at 33° C. and an 86 g/L total sugars loading of the C5 liquor. M5870 showed greater ethanol production for 120 hours and M5401 was only able to reach the same ethanol titer as M5870 after 140 hours of fermentation time (FIG. 89). At 120 hours M5401 reached ˜24.5 g/L ethanol, while M5870 produced about 1.6 g/L more ethanol, an approximate 6% yield increase over M5401. The calculated percent of theoretical hydrolysis yield for M5401 and M5870 at 140 hours is ˜67%, however, M5870 achieved this % of theoretical hydrolysis 24 hours earlier than M5401. The increased rate of hydrolysis for M5870 is likely due to the increased expression of the genes that were engineered into M5401 to generate M5870.

INCORPORATION BY REFERENCE

All documents cited herein, including journal articles or abstracts, published or corresponding U.S. or foreign patent applications, issued or foreign patents, or any other documents, are each entirely incorporated by reference herein, including all data, tables, figures, and text presented in the cited documents.

EQUIVALENTS

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

Expression of enzymes in yeast for lignocellulose derived oligomer CBP专利检索- .....β-半乳糖苷酶专利检索查询-专利查询网 (2024)
Top Articles
Latest Posts
Recommended Articles
Article information

Author: Carlyn Walter

Last Updated:

Views: 6136

Rating: 5 / 5 (70 voted)

Reviews: 93% of readers found this page helpful

Author information

Name: Carlyn Walter

Birthday: 1996-01-03

Address: Suite 452 40815 Denyse Extensions, Sengermouth, OR 42374

Phone: +8501809515404

Job: Manufacturing Technician

Hobby: Table tennis, Archery, Vacation, Metal detecting, Yo-yoing, Crocheting, Creative writing

Introduction: My name is Carlyn Walter, I am a lively, glamorous, healthy, clean, powerful, calm, combative person who loves writing and wants to share my knowledge and understanding with you.